
Using Test Environment
Management to Reduce
Costs and Eliminate Defects

WHITE PAPER

Highlights

When companies are

driven to release production

software at an ever-faster rate,

software testing can become

compromised software releases

persist.

Lack of testing results in defects,

angry customers, and higher

costs.

Test Environment Management

(TEM) streamlines the testing

process, allowing developers

to fully and rigorously test their

applications.

Plutora’s Test Environment

Management solution helps

TEM scale to larger enterprises.

Software development does not occur in a vacuum.
Aside from the significant cross-team collaboration
requirements, the tools and techniques that underly a
successful deployment into production pull from a broad
range of disciplines and experiences.

Unfortunately, to many enterprises, software testing is
one of those aspects of development that is overlooked
despite its obvious importance. Why? Because, lacking a
thorough familiarity with TEM, most managers assume
that benefits gained will be remote while costs incurred
will be immediate.

The truth is not so. With a bit of know-how, adherence to
the best practices, and the right tools, test environment
management can be implemented with little hassle and
tremendous savings.

The solution, therefore,
is not to abandon
testing, but rather to
test in a way that is fast,
comprehensive, and cost-
effective—in short, to
deploy managed testing
environments.

As software releases move
through various phases
such as system integration
testing, non-functional
testing, user acceptance
testing and into staging,
the complexity of the
environments and
associated costs with
supporting these
environments can grow
exponentially.

Over the past several years, the tools and techniques available to software

developers have become more numerous, and more refined. Agile has

inspired Scrum, Kanban, Scrumban, LSD, and so on. Flash and JavaScript

have been supplanted in their turn by HTML5, Swift, Hack, et al. Yet, in

spite of the technological and organizational advantages in the software

development industry, a critical arena remains in a relative backwater:

software testing.

Software testing is one of those unfortunate disciplines which lie on the

cusp between “important to perform” and “easy to neglect.” If an application

can run on a developer’s machine without bugs, the thought process

goes, surely it must run equally well on most end-user’s devices. While this

thought process has obvious fallacies, it is nonetheless a fact that developers

can and will sacrifice the testing process to deliver their product faster.

As an example, security testing has gone completely by the wayside.

According to a Ponemon Institute report on application security published

in March 2016, only 14 percent of the 630 respondents reported that their

organizations performed application security testing at every stage of the

software development lifecycle.

Neglected software testing might give a company the lead in terms of time-

to-market, but that neglect also delivers a long tail of negative externalities

in terms of zero-day vulnerabilities, reduced productivity associated with a

malfunctioning apps, and negative customer experiences.

Test Environments currently exist in a rather disorganized, immature form.

As stated, a lot of early-stage test environments get set up and run on local

machines. Developers have total control over these machines, and thus the

testing process goes rather well.

As the development process inches towards production, however,

environments tend to get more complex. As software releases move

through various phases such as system integration testing, non-functional

testing, user acceptance testing and into staging, the complexity of the

environments and associated costs with supporting these environments

can grow exponentially.

Introduction

The State of Test Environments
in 2016

It is therefore important that these finite and expensive resources

are managed appropriately to not only reduce errors caused by

misconfiguration but also to improve the shared use and utilisation of these

environments. Contention becomes a problem when multiple teams have

to share one testing environment, and there are constant changes to the

environment

and squabbles over who gets to use it, creating inefficiencies.

In yet another example, a dev team creates their testing environment on

their company’s AWS implementation. Once they’ve finished, they don’t

need it again right away, but they might need it soon. They leave it running,

driving up costs.

There are many further examples, but here’s the gist: The use of test

environments in the enterprise does not currently take efficiency,

collaboration, or cost-effectiveness into account.

In order to successfully compete in the software development arena,

one must reduce obvious inefficiencies in time and cost. This isn’t a

developer’s job, and when developers manage testing environments ad hoc,

inefficiencies creep into the process. Here’s a better approach: let’s take a

look at how to utilize Testing Environment Management (TEM) in order to

streamline the software testing process.

As a caveat, this is basics for beginners, and should not constitute a

roadmap for implementation at larger enterprises.

If an organization is starting to implement TEM midstream, then they most

likely have several environments already in place. The first step is then

to audit their pre-existing assets. These assets are comprised of specific

hardware and software. These components are the baseline, and the way

they are set up is your configuration. Some environments will be subsets of

other environments, or will be running on the same hardware or software

platform. These are dependencies. Lastly, the TEM organization will want to

consider exclusivity – whether or not the environment can be shared.

Together, these factors make up an ABCDE approach to auditing test

environment infrastructure: Assets, Baseline, Configuration, Dependencies,

and Exclusivity.

The Basics of Test Environment
Management

Together, these
factors make up an
ABCDE approach
to auditing test
environment
infrastructure:
Assets, Baseline,
Configuration,
Dependencies, and
Exclusivity.

ASSETS

BASELINE

CONFIGURATION

DEPENDENCIES

EXCLUSIVITY

As an aside, an enterprise with thousands of people may include dozens or

hundreds of test environments. The auditing process will, of necessity, be

slow and methodical. Changes may be made in testing environments while

the audit is in process– these must be incorporated into your baseline as

they occur.

Once you have a thorough understanding of the testing environments

that are under your control, the next step is to follow through and actually

manage them. There will be several teams, several projects underway, and a

limited number of testing environments: who needs what, when?

Start with a calendar. Again, the management process will most likely begin

while several projects are already in-flight. The first iteration of the timetable

will show which teams have control over what assets, and how long they’re

going to keep them. At this point, one of the examples from the section

above might be encountered: two teams squabbling for control of an asset

that they both need.

Once these conflicts are taken care of—and unfortunately, there’s no

definitive roadmap as to how—the TEM team will be able start anticipating

future demand. Once it comes time to meet this demand, the team will

begin to actually exercise their power.

As time goes on, the team might discover that there simply aren’t enough

environments to allow developers to get thoroughly-tested software out the

door in a reasonable amount of time. Thus, it may become necessary create

a new environment to meet demand. On the other hand, the team may find

that a testing environment is underused, and then delete it.

A dev team will enter the application testing phase, and request one or

more testing environments for their use. They might also find that there

isn’t currently an available testing environment that fits their needs. They

may request that an existing environment be changed or updated in order

to suit their purposes.

The responsibilities of a test environment manager at their broadest

definition include: creating, deleting, assigning, and updating.

The goal is to create a system that ensures developers are never under-

resourced, and that testing assets are never under-utilized.

Creating, deleting,
assigning, and
updating – these are the
responsibilities of a test
environment manager at
their broadest definition.

As the ability to manage testing environments matures, the TEM team

will produce increasing benefits in terms of lowered costs, heightened

productivity, and fewer bugs in production apps.

In the past, if a development team couldn’t get access to testing

environments on time, that would mean that they had a smaller amount

of time to test an application. It wouldn’t mean that an application would

be delayed – because enterprises will no longer flex release dates to

accommodate for a lack of testing. The team would simply have to make do,

and then fix any defects that arose after the app went into production.

Test Environment Management, when done correctly, remediates this issue

by providing one or several appropriately-configured testing environments

exactly when they are needed. Even by providing this single benefit, TEM

allows development teams to deliver higher-quality production software

without lengthening the software development lifecycle. It also saves time

and money post-release, as teams will no longer have to devote as much

time or as many resources to chasing down bugs and vulnerabilities.

As time goes on, a TEM team will begin to develop expertise in the

configuration and deployment of testing environments. They will be able

to provision test environments more rapidly, extending the benefit shown

above. It also means that they will be able to configure test environments

with higher accuracy and increased uptime.

Accuracy is of extreme concern in software testing. It is necessary to

replicate as much of the production environment as possible, even

down to details such as live server traffic. If these details can’t be

replicated accurately, then developers simply have to wait until their app

is in production and see if errors crop up. If testing environments are

being assembled by developers on an ad-hoc basis, it’s likely that the

environments that they create won’t be as accurate as possible.

The same holds true for uptime. An ad hoc team of developers won’t be able

to devote as much time to monitoring the health of a test environment, as

opposed to a dedicated TEM team. If the testing environment crashes, they

can’t test, and the testing process will run longer due to the delay. Having

a team that can monitor the testing environment and prevent crashes in

advance means that dev teams can perform more exhaustive, and time-

consuming tests.

Benefits of a Mature Testing
Environment Management Model

Having a team that can
monitor the testing
environment and prevent
crashes in advance means
that dev teams can perform
more exhaustive, and time-
consuming tests.

As the ability to manage
testing environments
matures, the TEM team
will produce increasing
benefits in terms of
lowered costs, heightened
productivity, and fewer
bugs in production apps.

Lastly, a mature TEM team will produce cost savings. Allowing development

teams to create their own testing environments results in waste. Developers

may not understand the cost of environments, and may create active

environments that remain unused for long periods of time. This racks

up costs, especially when these environments are hosted in the cloud. A

centralized TEM team will have a much better understanding of these costs,

and will collect metrics in order to determine which environments cost

more than they’re worth.

To summarize, testing environment management provides long-term

positive benefits. TEM reduces defects in production applications by

allowing development teams to lengthen their testing cycle, use more

accurate test environments, and perform more resource-intensive tests. TEM

also reduces costs, not just by allowing visibility into which environments are

wasting money, but also by quantitatively reducing the number of defects

in productions apps, thus allowing teams to spend more time working on

new products, and less time remediating defects.

Imagine the scale of a larger enterprise – a bank, telco or insurance

company, for example. Imagine not just dozens or hundreds of testing

environments, but thousands, hosted in virtual environments and on

hardware platforms, belonging to teams that are scattered to the four

corners of the Earth.

In this scenario, no unassisted human intelligence will be able to efficiently

provision, update, create, or delete testing environments. In order to prevent

chaos, automation software is required.

Plutora provides an enterprise-scale Test Environment Manager that

allows large organizations to achieve the same positive benefits in terms of

producing high-quality software, eliminating redundancies, lowering costs,

and reducing time-to-market.

This SaaS-based solution allows test environment managers to rapidly

audit pre-existing test environments, and provides a centralized platform

for managers to view requests to change or patch testing environments.

Managers will be able to track their assets while they’re in use, record

changes, and estimate their impact in real time.

Test Environment Management
by Plutora

TEM reduces defects in
production applications
by allowing development
teams to lengthen
their testing cycle, use
more accurate test
environments, and
perform more resource-
intensive tests.

Plutora provides an
enterprise-scale Test
Environment Manager
that allows large
organizations to achieve
the same positive benefits
in terms of producing
high-quality software,
eliminating redundancies,
lowering costs, and
reducing time-to-market.

Lastly, Plutora Test Environment Management can replace an ad-hoc

collection of spreadsheets and calendars by controlling the assignment

of test environments to dev teams. Developers will have a highly visible

and understandable portal with which to view the apportionment of test

environments, as well as any potential conflict for resources that may arise.

As the discipline of software development has advanced at an

extraordinarily rapid pace, software testing has been left behind. Close the

gap with Plutora Test Environment Management, and enjoy the benefits

that come with lower costs, better products, and happier customers.

Plutora, the market leader of continuous delivery management solutions for

enterprise IT, ensures organizational alignment of software development with

business strategy. Plutora improves the speed and quality of application delivery

by correlating data from existing tool-chains, coordinating delivery across diverse

ecosystem of development methodologies and hybrid test environments, and

incorporates test metrics gathered at every step of the delivery pipeline. The platform

provides visibility and a system of insights into the entire value stream, guiding

continuous improvement efforts through the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

