
DevOps Tools: 
Why You Need Them
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst. Nullam 

dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra. Nam ut dolor urna. In 

rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet. 

DevOps At Scale: Chapter 7



Describing DevOps is not 

straightforward. It has many meanings. 

At times, technology professionals pay 

too much attention to tools 

and automation and not enough to 

the culture shifts, team dynamics, and 

management at the heart of

true DevOps.

Further, a team that uses great tools 

doesn’t necessarily use them well. For 

tools to help, teams need to bring the 

right mindsets, attitudes, and objectives 

to their DevOps journeys.

Nonetheless, without tools, it’s hard to automate. 

Without automation, DevOps is more dream than 

reality. Thus, tooling is a critical part of making 

the transition. There are more important parts 

of DevOps than tools, but tools are very much 

necessary. Choosing the right tools is, therefore, 

critical to DevOps success.

There are a variety of tools that support a DevOps 

transformation, whether it’s using a tool at the 

bottom level of daily operation or tying together the 

many other tools into a complete operation.

How Tools Support DevOps

DevOps causes a shift in perspective toward 

thinking of software as a means rather than an end.

Software only serves a purpose if it solves real 

human needs. To determine if a product meets the 

needs of its users, one simply needs to look at their 

willingness to pay for it. Therefore, it’s important to 

be able to determine if changes to software lead to 

the tangible benefit of revenue.

DevOps is at its best when it does just this. While 

unifying the team, it automates and tracks the flow 

of features from check-in to delivery. To encompass 

this comprehensive enhancement of flow, DevOps 

needs controls and visibility in the entire process.

DevOps tools provide these very hooks into 

planning, development, testing, deployment, 

operating, and monitoring of applications. 

Furthermore, tools with a whole view of the 

entire process serve the need of orchestrating the 

many pieces involved. Organizations often lose 

themselves in the details of individual tools and 

processes unless they have something at this level.

The following sections offer more detail on tooling 

for individual parts of the DevOps process, as 

well as those offering support for higher-level 

coordination and management.



Agile Planning

In February 2001, a group of software luminaries 

met at the Snowbird ski resort. They were all using 

and experimenting with progressive ways of writing 

software in teams. A result of their collaboration 

was the Agile Manifesto. This document articulates 

preferring some emphases over others in the 

process of team operation. Among other values, 

agile software development prefers “responding to 

change over following a plan.”

Iterative and User-Focused

This principle yields an emphasis on iterative 

planning and iterative execution.

In addition to using an iterative approach, 

agility implies a focus on people. It emphasizes 

“individuals and interactions over processes 

and tools.” As such, agile teams don’t work from 

requirements documents constructed by an 

authority. Instead, they use user stories as their 

guide. User stories describe a person benefiting 

from a system or feature. Therefore, they put the 

planners and implementers into the mindset of 

serving that user.

With that in mind, planning in agile means 

iteratively delivering features that solve a real need 

for real users as defined in a user story. Tools 

for supporting this must support the user story 

definition and assignment to an iteration (or sprint, 

to borrow the common term used primarily in the 

popular Scrum form of agile).

Agile Estimation

Also, DevOps tools for agile planning need to take 

estimation into account. Velocity is a popular metric 

for assisting with both estimation and tracking 

progress. It’s easy to misunderstand, though. 

Teams often view velocity as a target or a metric 

for their performance. It’s not useful for those 

purposes. Rather, it should be viewed as a lagging 

indicator that puts estimation into a historical 

context for enhanced utility. Teams estimate the 

level of effort involved in user stories. They then 

use their historical velocity (or rate of delivering 

units of estimation per iteration) to determine 

which stories they can accomplish in a given period 

for greater predictability.

Good agile planning tools enable delivery, 

tracking, and visibility into planning and 

subsequent execution.



Source Code Repository

Software changes over time. This shouldn’t surprise 

anyone interested in DevOps. With experience in 

creating software comes the realization that an 

ability to track history and jump around to different 

versions of the source code is indispensable. 

Experienced technologists may remember a time 

when they weren’t familiar with version control. 

This usually meant making copies of source code 

directories in various states of change. It was hard 

to manage and hard to understand. Such manual 

and ad hoc systems usually failed to handle getting 

back to known good states, as well as managing 

history. It’s useful to envision the story of creating 

a version control system from scratch and the 

concerns one would face in such an endeavor.

Software teams simply need to be able to 

experiment and either move forward or return 

without difficulty. They need to know where they’ve 

been and make fixes to any point in history along 

the way. They need to be able to select some 

changes and not others.

This makes effective version control fundamental.

There are many options available for software 

version control. Because of its embrace of open 

source, distributed nature, high performance, and 

remarkable support for multiple workflows, Git has 

emerged as the de facto standard.

Modern teams want more than just version control, 

though. GitHub, Bitbucket, and Azure DevOps are 

tools that extend Git. They offer access control and 

collaboration tools for teams working in source 

code. These features include visualizing source 

code changes and history, issue tracking, and 

pull requests (also called merge requests) that 

enable code review in integrating work on different 

features and from different team members.

Build Server

Building software sounds simple. It often is. There 

are many different configurations, though, that 

a build can take. You can make build output with 

debugging symbols, or not. Some build parameters 

control optimizations and platforms. Further, 

manually building can result in building the wrong 

version of your code. Put simply, if your build isn’t 

automated, you frequently run into trouble with 

inconsistent build results. Many organizations have 

had problems because of deploying something that 

wasn’t built correctly.

Build servers solve this problem.

By using software to build in a known and 

consistent configuration, builds are repeatable and 

automatically use the expected version of the code. 

Thus, teams no longer find themselves guessing 



about what they’re building and subsequently 

deploying. Additionally, build servers can run 

automated tests after every build.

Continuous Integration

Furthermore, having a build server enables 

continuous integration. A dedicated build server 

can trigger builds for every commit that gets 

pushed to the canonical repository. This means 

that every time there’s an update to the source 

code, it’s integrated into a build that’s ready for 

automated testing, manual testing, acceptance 

testing, and possibly even immediate deployment 

to production. Teams that work in isolation tend 

to have problems when they try to integrate. 

Continuous integration means integrating work 

early and often so issues get addressed as quickly 

and effectively as possible.

Deployment Server

Deployments of software can be cumbersome 

activities requiring multiple people and many hours.

However, deployments can also be automatic. 

Different teams have different needs, and the 

conditions for deployment vary. For some teams, 

passing automatic tests in build and following 

automatic release to test environments mean a 

build is ready to be released to production. For 

others, there are manual gates that need to be 

cleared before deployment can proceed. In any 

case, deployments need to be easy, repeatable, 

and without undue burden to team members. The 

deployment server exists for this purpose.

Deployment servers automate the tasks associated 

with deployment so that deployments can be 

triggered based on events, like passing tests or the 

click of a button.

The deployment server can be a stand-alone 

software product running on a separate server 

or bundled into a unified product with the 

build server. There are options for both build 

and deployment servers that run in the cloud 

or on premise.

Continuous Deployment

As an added benefit, deployment servers enable 

continuous deployment. As mentioned before, it’s 

desirable for some teams to deploy their software 

automatically as soon as it’s complete. For such 

teams, continuous deployment is a reality enabled 

by the deployment server. Completed testing on 

completed builds triggers automatic deployment. 

This puts value in the hands of users more quickly 

than any other method of deployment.



Monitoring and Logging

Modern teams realize that extensive automation 

is a double-edged sword. Though automating 

has huge and obvious benefits and is necessary 

for DevOps, it comes with a downside. When 

build, deployment, operation, and management 

of infrastructure and applications aren’t done 

manually, it can be challenging to know what is 

happening and what has happened. With added 

complexity in large-scale software projects, visibility 

is both difficult and critical.

For these reasons, application logging that tells the 

story of what has happened and what is happening 

is table stakes. It’s necessary, but not sufficient on 

its own, though.

Merely logging well in applications doesn’t solve 

the need for visibility across redundant instances 

of running applications. The many applications 

and services running in modern environments 

exacerbate this problem. Logs need to be centrally 

visible and aggregated in ways such that team 

members and leadership can make sense of overall 

system health and status.

Log and data aggregation services exist to fill these 

needs. These services also often provide monitoring 

and alerts for conditions related to message types, 

frequency, and infrastructure characteristics.

Good logging enables visibility by giving a picture 

of system activity over time. Visibility enables 

identification of key events and metrics. Knowing 

what to watch enables automation of monitoring. 

Good logging and good monitoring go hand in 

hand. It’s for this reason that log aggregation tools 

also often support alerting based on monitors.

Virtual Infrastructure

The challenge of provisioning capacity to support 

workloads is great. Too little capacity is a problem 

for obvious reasons, but too much is also 

wasteful and cost-ineffective. The virtualization 

of infrastructure provides answers for this by 

creating flexibility for organizations in handling 

their workloads. It does this by using physical 

hardware to provide services to multiple instances 

of operating systems, rather than dedicating the 

hardware to only one.

By using virtual machines, teams also provision 

faster and can get up and running on projects in 

days rather than months. Such teams also have 

greater options for moving virtual machines 

between hosts to achieve greater fault tolerance. 

This means greater availability.



The Cloud Revolution

Virtualization opened the door to what is perhaps 

the largest and most impactful change in large-

scale computing in a generation. Cloud computing 

is enabled by the utility of virtual machines. 

Major players like Amazon, Microsoft, Google, 

and IBM provide mind-boggling amounts of 

computing capacity and share it with the world via 

many strategies for running workloads in 

virtualized environments.

Cloud computing gives options to organizations to 

be able to scale in ways that were accessible only to 

the largest businesses before. It lowers the barrier 

to starting on projects and increases both speed 

and agility.

Containers

Beyond virtual machines, containers are the next 

step in virtualization. Containers move higher up 

the stack and virtualize not only the hardware but 

the operating system kernel as well. This yields 

a virtualization vector with the ability to create 

smaller and more concentrated payloads to deploy 

on top of infrastructure prepared for them.

Docker, a leading container platform, doesn’t make 

containers possible, but it makes working with 

containers straightforward. Docker is a set of tools 

that make it easy to build and run containerized 

processes that come with all the dependencies they 

need. Working with containers enables the true 

spirit of DevOps in that it’s the most complete way 

yet devised for developers to package everything 

an application needs into an image that just 

needs to execute. Rather than documenting how 

an operations team should run an application, 

teams can now write a Dockerfile that scripts out 

the creation of the runtime environment. This is 

powerful in progressing DevOps.

Container Orchestration

With containerized workloads running processes 

with everything they need to thrive, there’s still 

a need for coordination and command of those 

containers to make for a cohesive whole system. 

This is the realm of container orchestration. 

The leading tool for container orchestration is 

Kubernetes. It’s a mature platform that emphasizes 

that teams specify the desired state for their 

containerized infrastructure, with the right amount 

of redundancy and ways of verifying health, and 

Kubernetes turns that desire into reality. After 

achieving this desired state, it then endeavors to 

keep it there.

Orchestration engines are complete platforms 

(at least, in the case of Kubernetes) that can run 

an entire operation. They do this while providing 

service abstractions, load balancing, fault tolerance, 

monitoring, and management capabilities.

Serverless

 

Yet another alternative model of virtual 

infrastructure is that of serverless applications.

The name is misleading. The software does 

run on servers. Serverless is named as it is, 

though, because teams deploying to serverless 

infrastructure don’t have to think about servers.

They simply provide functionality for a cloud 

provider to run, and the infrastructure handles 

what it needs. For many workloads, it’s an option 

worthy of consideration.



Test Automation

Automating tests is not always straightforward. It 

can be a messy business, and it takes time to learn 

how to do it effectively.

Despite the difficulty and investment required in 

getting up to speed on automated testing, it’s well 

worth it. Teams that know their complete suite of 

automatically executed tests have advantages over 

those without. Such teams know their tests will 

notify them of problems. They feel comfortable 

making changes. They proceed with confidence.

Why Automate Tests?

Teams without such automation are often left 

holding their collective breath as they deploy. Work 

is a series of stressful days, waiting anxiously for the 

next fire to put out. In such a stressful environment, 

deployment is painful. When deploying is painful, 

increasing deployment frequency isn’t feasible.

In addition to the confidence that comes from 

well-designed and well-written tests, such a test 

suite is a prerequisite for continuous deployment. 

If the automated tests can’t be trusted to inform 

the team of regressions, deploying continuously 

isn’t practically possible. Good test automation is 

therefore crucial for teams practicing DevOps.

Barriers to Effective Test Automation

There are many reasons testing is hard. Developers 

have often not practiced the skill of writing good 

unit tests. Tests often do too much or test things 

that don’t need to be tested. Frequently, tests 

require too much setup and are therefore too slow.

DevOps teams need tests that execute quickly 

and give rapid and reliable feedback on the 

correctness of builds.

Tests that test the entire stack from end to end are 

also important. They need to be fewer in number to 

support the idea of rapid feedback because of their 

relative slowness. Still, they complete the picture 

of the needs for automated testing. Such tests, or 

at least a subset of them, can also be used to verify 

that production is operating as expected.

Test Automation Tools

The primary testing tools DevOps teams need 

to know are unit test frameworks, browser-

driver automation tools, and behavior-driven 

development (BDD) frameworks.

Developers use unit test frameworks most 

frequently to write small tests with limited scope 

that execute extremely quickly. This is primarily 

to drive fast feedback during the development 

process. Such tests are adept at catching 

regressions too. These tools are beneficial for other 

types of tests as well and have useful features for 

selecting which tests run in which contexts. Unit 

test frameworks exist for close to every language 

known.

Browser automation tools are useful for testing 



as a user would, from end to end in the system 

via the user interface. Such tests are usually the 

slowest of all automated tests. However, they have 

the greatest scope and are the most complete in 

the problems they can identify. They are also more 

susceptible to false positives and are relatively hard 

to maintain. For these reasons, they’re necessary 

but should be a minority of the automated tests 

written by a team. Selenium is the most popular 

browser automation tool.

Behavior-driven development tools qualify as 

testing tools. The primary aim of BDD tools is 

collaboration on understanding the needs of users 

rather than testing. Although they aren’t strictly 

testing tools, they’re sometimes used as though 

they were. Doing this can result in very readable 

tests and very useful test results reports. For these 

reasons, BDD tools can stand in the stead of unit 

test frameworks in addition to serving purposes 

beyond testing.

DevOps Security

DevOps causes a shift in perspective concerning 

organizational security. The idea of one team that 

encompasses both development and operations and 

a blending of those roles might imply a few things 

about security specialists. That security specialists 

are left out of this new clique, yielding a fragmented 

organization, is a possibility. That team members take 

responsibility for security is another.

DevSecOps is the term that applies the DevOps 

idea of whole team responsibility to security. In the 

same way that DevOps blends responsibility for 

development and operations into the whole team, 

DevSecOps includes security in DevOps. This means 

applying a security mindset to DevOps and applying 

a DevOps mindset to security. It requires team 

members to understand security concerns and

take them seriously.

Fast-paced DevOps environments present new 

security challenges. Cloud computing infrastructure 

provides different security facilities than traditional 

on-premise deployments. Clouds are not necessarily 

less secure than on-premise devices, but the 

security concerns are different. Containers present 

additional problems. Docker, for example, has had 

vulnerabilities exposed. They tend to resolve them 

quickly, but these many moving pieces present a 

diverse set of attack vectors. Defaults in building 

container images often yield running with root access. 

Secure containers result from careful attention from 

thoughtful team members. This requires either 

constant vigilance or tools to resist vulnerability. 

Further, the proliferation of automated deployments 

and dynamically created infrastructure creates new 

requirements for secrets management that can be 

accessed in multiple instances and still secured.



Dealing with these security challenges requires 

sophisticated governance. Cloud platforms 

provide secret management, as does Kubernetes. 

Platforms provide facilities for policies to restrict 

access, including private, segmentable networks. 

Kubernetes, for instance, is configurable such that it 

will only run containers executing as specific 

non-root users.

Penetration testing and security audits are also 

essential security tools for DevOps.

Pipeline Orchestration

Only the smallest and simplest of organizations 

have a single pipeline to worry about. In large-scale, 

modern businesses, multiple teams working on 

multiple subdomains compose the larger operation. 

Ideally, boundaries are constructed such that 

deployments can happen independently and teams 

move forward delivering with dependencies on 

when other teams deploy. This isn’t always a reality. 

Even in cases where it is, coordination of multiple 

builds and deployments makes sense to track 

features from concept to cash.

Most of the tools discussed in this paper so far are 

concerned with a piece of the overall flow of value 

through a system. Pipeline orchestration enables 

the composition of these disparate pipelines into a 

more cohesive whole.

Management

Related to pipeline orchestration, organizational 

leadership needs visibility into quality and 

understanding of how every system state came 

to be. Governance is the term used to relay the 

importance of this knowledge. DevOps tools need 

to surface the information necessary to prove 

compliance to standards for auditing.

Changing the culture and automating pipelines 

are only steps in a true DevOps transformation. 

Visibility into pieces of what’s happening in the 

overall operation is necessary but leaves a lot to be 

desired when it’s fragmentary.

With unified visibility, leadership better 

understands the flow of value through the stages of 

delivery. This enhances decision-making at the top 

level, which feeds back into the implementation. 

Friction points requiring attention are identified and 

can then be addressed.

DevOps tools offer control levers and valuable 

information at all levels of the organization.



Value Stream Mapping

When DevOps takes hold, visibility into pieces of an 

overall operation is straightforward. Visibility into 

the overall health and, more importantly, the value 

of the whole is quite another matter. Disparate log 

streams and pipeline statuses tell a story, but it 

isn’t the whole story of the value delivered by the 

business and the technology teams serving it.

The original mapping of the value creation process 

toward realizing product features is typically done 

on whiteboards. Features are born in a creative 

collaboration of minds designing how pieces of 

systems can interact to create something useful.

Agile planning brings this utility into user stories 

that can be implemented by teams. DevOps yields 

quick delivery of these stories. Management of this 

value stream helps the organization respond to 

customer needs and deliver features quickly.

Ultimately, teams want to be focused on creating 

value. In the same way that user stories shift focus 

from requirements to real user needs, an effectively 

mapped value stream facilitates the delivery of real 

value, rather than potentially meaningless features.

Plutora offers a value management platform that 

enables the enlistment of a vast array of DevOps 

tools into a converged toolchain. The converged 

toolchain offers a unified and cohesive view and 

control plane for understanding customer value 

and the process of delivering. This means not only 

DevOps teams, but broader DevOps organizations.

Tying It All Together

Doing DevOps right means uniting teams in a 

common purpose and aligning that purpose 

with value to end users. This and speedy 

agility with rapid feedback are enabled by 

automation. DevOps tools form the crucial 

foundation of an automation platform. While 

these tools make operations proceed without 

human intervention, they also provide views 

into the operation for human intelligence 

to make sense of what’s happening 

automatically. Finally, at the top-level, a 

converged toolchain like the Plutora value 

stream management platform completes the 

link between needs and implementation.

DevOps isn’t about tools, but tools make 

complete DevOps possible. Tools enhance 

cultural improvement and are indispensable.



Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality 

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid 

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step. 

The Plutora Platform ensures organizational alignment of software development with business strategy and provides 

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through 

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization 

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model 

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success 

Visit www.plutora.com/devops to learn more.


