
Mastering 
the DevOps Process
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst. 

Nullam dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra. 

Nam ut dolor urna. In rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet. 

DevOps At Scale: Chapter 6



As a DevOps team matures, they often 

find that their environment fills with a 
growing number of moving parts. When 
all of these pieces are moving in concert, 
new features are released regularly 
and smoothly. This isn’t only true for 
technology. Mature DevOps teams have 
processes that work harmoniously with 
one another to make shipping code 
smoother. The same is not necessarily 
true for immature teams. Immature 
teams rely on faulty processes and 
poorly-configured architecture. These 
delay releases, suck up engineer time 
with tedious tasks, and cause the team 
to ship more bugs to customers.

Savvy teams seek ways to avoid these kinds of 

failures. As a team learns, it progresses through 

various states of DevOps maturity. Sometimes 

those tools to avoid failure will be technical in 

nature, but just as often they’ll be changes to 

process or lines of communication. A team can 

have the best tech in the world, but if they have 

bad processes, they’re still going to fail as 

often as they succeed.

In this article, we’ll talk about three overarching 

processes that all mature DevOps teams need to 

master. Each of these skills is a place where 

teams must grow from immature to mature. Unless 

a team is brand new, it’s likely that they’ve already 

developed a way to handle these processes. But 

a commitment to good DevOps practices means 

rethinking how to approach each of 

these problems.



Release Management

Release management is the process of how a 

team coordinates the actual release of code to 

customers. Good code tends to pass through a 

variety of steps so that stakeholders throughout 

the business can verify its validity. Beyond simply 

designing and writing the code, code needs to go 

through testing, user acceptance, and compliance 

phases. These steps ensure that the code does 

what it says it does, that customers are happy 

with what it does, and that it doesn’t expose the 

company to risk.

How Do Immature Teams Do Release 

Management?

Anyone who’s worked in a big organization 

before innately understands immature release 

management. Usually, the process for release 

management is (in a word) slow. A feature will 

experience lengthy stops at each gate of the 

process. Oftentimes, a feature will sit in a queue, 

meaning that it’ll wait days or weeks before 

someone is able to evaluate the code’s fitness. 

Then, as is common with any bit of code, it’s likely 

that the gatekeeper will discover some issues. The 

developer responsible for those features is able to 

begin to correct the problems. Then, they’ll send it 

back through the gates. Again, at each stop along 

the way, the code will experience lengthy delays 

before a human actually looks at it.

Just like developers, operations staff suffer from 

this degree of manual process. Immature teams 

manually manage their technological resources. If 

a new feature requires some kind of new service, 

such as a message queue, operations staff are 

on the hook to deliver. That doesn’t just mean 

delivering a message queue to production, either. It 

means a message queue for testing environments, 

and a message queue for quality assurance. 

It means going through manual approval by 

the compliance team. Manual environment 

management can feel like putting out fires. Just 

when the team thinks everything is under control, 

some new environment is needed. The process 

starts all over again from the beginning.

Once those systems are set up, monitoring them 

is also a manual task. Operations staff need to 

manually collect metrics, and when those metrics 

are outside of acceptable parameters, they report 

that manually, too.

Immature Teams Don’t Think Past the 

Release

Eventually, the wait between writing the code and 

releasing it becomes so lengthy that developers 

will probably need to combine it with some other 

group of features and bug fixes into a bigger 

release. This means the process starts all over. 

The result is significant frustration for technical 

and project management teams. No one can 

predict when a new feature will ship to customers. 

No one is ever sure which features or bug fixes will 

be part of a release.



What’s more, this kind of gating ignores a crucial 

part of release management: post-launch support. 

Clever readers will notice that the entirety of the 

release management process described above 

focuses on what happens before a release. 

Obviously, software isn’t released into a void. 

Customers have feedback. Their needs change. 

Bugs the testing team didn’t catch rear their heads. 

Immature teams have no plans for the way that 

they’ll deal with these issues.

How Do Mature Teams Do Release 

Management?

Mature teams approach release management 

from an entirely different perspective. For starters, 

their focus with release management is just as 

much on how to support new features after they’re 

released as in shepherding that code before it goes 

to customers. They have simple, straightforward 

processes for gathering user feedback and listening 

to customers about how their needs are changing.

Instead of large, unwieldy manual gates, mature 

DevOps teams seek to involve stakeholders earlier 

in the process. Stakeholders test and evaluate code 

soon after developers write it. This means that 

developers can create automated tests which help 

ensure that the code does what it’s designed to 

do as they work on it. Since that manual feedback 

comes earlier in the process, there is less confusion 

around the status of a project. Developers spend 

less time context switching between different 

features because stakeholder feedback comes 

quickly and clearly. Because stakeholders are 

able to confirm the quality of code during the 

development process, quality gates are now 

automatic.

Mature Teams Automate As Much As 

They Can

Operations staff are able to configure CI/CD 

systems to automatically move code quickly from 

finished to general availability. Developers don’t 

have to suffer through round after round of 

feedback before their code ships. What’s more, if 

a developer does launch code and learn only after 

shipping that there’s a flaw customers discovered, 

there are mechanisms in place to deal with that. 

Feedback is quickly gathered, and the developer 

can work on the code—while it’s fresh on their 

mind—to correct the mistake.

While CI/CD is beneficial for deployment, mature 

DevOps teams move past just building code 

and running automated tests. They automate 

everything, including the provisioning of their 

environments. This is usually done by some sort 

of solution in which infrastructure is designed 

through a coding interface. These tools ensure that 

infrastructure is correctly configured, no matter the 

environment. So if, for example, a new message 

queue is needed in four environments, it’s only a 

couple of lines of code away.

These teams also configure effective metric 

measurement and notification systems. Everything 

happens automatically, meaning that operations 

staff are free to work on bigger problems.



Hybrid IT Management

Test environment management is the process of 

making sure that code is tested in an environment 

as close to release as possible. This means 

effectively building a miniature production 

environment while also ensuring that the 

security of the organization and its customers 

remains strong.

How Do Immature Teams Do Test 

Environment Management?

Test environment management is something that 

many immature teams don’t consider at all. Test 

environments need to be manually configured by 

an engineer every time something changes. This 

means that code can regularly find itself in an 

environment that looks nothing like the production 

environment. Critical services might lack important 

updates. Databases could use a very old schema or 

severely outdated data.

Some organizations will choose to simply copy 

their production database straight to their testing 

environment. This can lead to issues too; these 

databases will contain personally-identifiable 

information of customers. Protecting that important 

information is critical, so exposing it on a testing 

environment risks disclosing that information to 

unauthorized employees.

As noted previously, fully-manual testing processes 

are prone to long delays. People get busy. This 

is especially true of project gatekeepers in large 

organizations. Those gatekeepers can only test 

one thing at a time, which increases the time 

between writing code and testing it. The problem 

compounds when some new feature introduces a 

new dependency to the test environment. These 

delays pile up on top of each other. By the time 

code gets back to a developer, they’ve forgotten 

most of what they wrote, and the cost for putting 

that code back in its proper context is high. These 

costs go straight to the bottom line of the company, 

resulting in a longer time to develop new features 

and respond to shifting environments.

How Do Mature Teams Manage Test 

Environment Management?

Mature teams, like with release management, 

automate as much as they can. For test 

environments, this means automating just about 

everything. Mature DevOps organizations leverage 

their CI/CD system to make setting up new testing 

environments a simple process. The same goes 

for tearing them down. This means that test 

environments are cheap. If a gatekeeper has the 

bandwidth to look at four different features in 

one day, operations can provide them four testing 

environments, one for each feature. The whole 

thing might take a few minutes.

Instead of using outdated databases, or leaving in 

rows which contain sensitive information, a mature 

DevOps team uses an automated script to create 

new testing databases. This script anonymizes data 

before it moves to the pre-production server, so 



sensitive information doesn’t leak. Much like test 

environments, these databases are trivial to stand 

up and tear down. Operations teams easily build 

new test environments, including a completely 

separate database, for every feature.

Deployment Planning

Deployment planning is about making sure that 

a release has all the necessary resources, both at 

launch and after release.

How Do Immature Teams Do 

Deployment Planning?

Once again, this is something that immature 

teams rarely do. The development and project 

management teams will regularly toss new 

requirements over the wall to operations staff. 

They won’t discuss the feasibility or efficiency 

of architectural decisions. Decision-makers 

finalize decisions before consulting all the team’s 

technical experts on a topic. This means that it’s 

often difficult to correctly configure production 

environments for a release. An entirely manual 

configuration management strategy compounds 

these challenges.

The slow, painful process for getting a feature 

to release adds another layer of challenge to 

operational work. Because testing and user 

acceptance and compliance are manual and take 

unknown amounts of time, operations staff don’t 

know which features will be in a release. This makes 

it difficult to prepare an environment for a feature. 

It’s no good updating software packages or library 

versions if the new code to take advantage of those 

changes isn’t in the release.

All of this adds up to stressful deployment planning. 

A hallmark of this kind of disjointed planning is 

operations staff regularly needing to play the 

hero. Immature DevOps teams regularly see their 

operations staff working long hours or needing to 

manually prepare releases for hours ahead of time.

How Do Mature Teams Do Deployment 

Planning?

A mature DevOps team turns that kind of thinking 

on its head. Their attitude is that operations 

staff should not need to be manually involved in 

a release. Instead, continuous delivery systems 

mean that as developers finish features, they’re 

deployed automatically. Planning phases for new 

features involve operations experts, so they’re 

never surprised by what architecture they need for 

a feature.

As features and releases become smaller, 

releases become more frequent. This is a boon to 

deployment planning, too. Because the releases are 

small and regular, there’s no need to do the hard 

work of a big, last-second integration of disparate 

features. The quick-release cadence also means 

that features themselves can be smaller. Project 

management doesn’t need to shove a dozen 



features into the same release when releases 

happen every week instead of every quarter.

Finally, moving more testing into automated 

tests means that the team ships fewer bugs to 

customers. This decreases long-term support 

costs and makes the lives of both developers and 

operations staff less stressful as a result.

Managing DevOps Means Thinking 

Smaller

Much like an orchestra, managing DevOps is about 

balance. It means finding a way to get dozens of 

individuals on the same page at the same time. 

Just like with an orchestra, the key is to make the 

parts small and simple. Each player only needs to 

understand how to perform their part of the overall 

performance.

Mature DevOps teams do this by making each part 

of the release small and manageable. Features are 

smaller and released more quickly. Operations 

staff automate as many parts of the process as 

they possibly can. Project management design the 

minimum number of viable products, then ship 

them as quickly as possible. Testing staff test small 

features quickly and provide feedback as soon as 

possible.

As with every part of the DevOps culture, mature 

processes don’t happen overnight. They’re the 

product of years of hard work and constant, small 

improvements to the team. Each step of the way 

makes things a little better. The reward at the 

end of the road is a more functional business and 

happier staff, which is well worth the journey.



Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality 

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid 

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step. 

The Plutora Platform ensures organizational alignment of software development with business strategy and provides 

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through 

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization 

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model 

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success 

Visit www.plutora.com/devops to learn more.


