
DevOps:
Deployment Pipeline
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst. 

Nullam dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra. 

Nam ut dolor urna. In rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet. 

DevOps At Scale: Chapter 5



DevOps has been gaining immense 

popularity in the recent past as IT 

decision-makers across the globe have 

started realizing the benefits that it 
offers. Powered by automation and aided 
by cross-departmental collaboration, 

DevOps has taken the software 
development world by storm. However, 
not a lot of IT executives are aware of 
the nitty-gritty of a DevOps pipeline. It 
might be that way because the different 
concepts involving a DevOps pipeline are 

often not well defined.

This resource article attempts to 

break down the different components of 
a sample DevOps pipeline and explains 

what a pipeline looks like 
in the enterprise.

Different Phases in a Typical 

DevOps Pipeline

The core of a DevOps pipeline constitutes the 

following: continuous integration/continuous 

delivery (CI/CD), continuous testing (CT), continuous 

deployment, continuous monitoring, continuous 

feedback, and continuous operations. Let’s delve 

into what these concepts mean and how they serve 

as building blocks for DevOps.

Continuous Integration/Continuous 

Delivery (CI/CD)

Before continuous integration (CI) was in place, 

developers built the application features in silos 

and submitted them separately. The concept of CI 

has completely changed how developers go about 

sharing their code changes with the master branch. 

With CI, the system frequently integrates the code 

changes into a central repository several times a 

day. As a result, merging the different code changes 

becomes easier and is also less time-consuming. 

You’ll also encounter integration bugs early, and the 

sooner you spot them, the easier it is to work on 

resolving them.

Continuous delivery (CD) is about incremental 

delivery of updates/software to production. While 

serving as an extension of CI, CD enables you to 

automate your entire software release operation. 

It allows you to look beyond just the unit tests and 

perform other tests such as integration tests and 

UI tests. As a result, the developers can perform 

a more comprehensive validation on updates to 

ensure bug-free deployment. With CD in place, you 



increase the frequency of releasing new features. 

Consequently, it enhances the customer feedback 

loop, thereby creating the opportunity for better 

customer involvement.

Thus, CI/CD serve as linchpins to any 

DevOps pipeline.

Continuous Testing (CT)

Continuous testing (CT) is another key component 

of a DevOps pipeline. With continuous testing, 

you can perform automated tests on the code 

integrations accumulated during the continuous 

integration phase. Besides ensuring high-quality 

application development, continuous testing also 

evaluates the release’s risks before it proceeds 

to the delivery pipeline. Barring the script 

development part, continuous testing 

doesn’t require any other manual intervention. 

Testers write the test scripts before the 

commencement of coding. As a result, once the 

code integration happens, the tests begin to run 

one after the other automatically.

Continuous Deployment

There’s an element of ambiguity when people 

talk about continuous delivery and continuous 

deployment. People often interchange the two 

terms although there’s a substantial difference 

between them.

Continuous deployment succeeds continuous 

delivery, and the updates that successfully pass 

through the automated testing are released into 

production automatically. As a result, it enables 

multiple production deployments in a single day. 

While the goal of continuous delivery is to make 

your software ready for its release instantly, the 

actual job of pushing it into production is manual. 

That’s where continuous deployment comes 

into the picture. And, as mentioned earlier, if the 

updates can be deployed, they’ll be deployed 

automatically through continuous deployment.

Continuous Monitoring

Monitoring your systems and environment is crucial 

to ensure optimal application performance. In 

the production environment, the operations team 

leverages continuous monitoring to validate if the 

environment is stable and that the applications 

do what they’re supposed to do. Rather than 

monitoring only their systems, DevOps encourages 

them to monitor applications too. With continuous 

monitoring in place, you can continuously keep a 

tab on your application performance. The data thus 

gathered from monitoring application performance 

and issues can be used to discover trends and also 

identify areas of improvement.

Continuous Feedback

People often overlook continuous feedback in 

a DevOps pipeline, and it doesn’t get as much 

limelight as the other components. However, 

continuous feedback is equally valuable. In fact, the 

purpose of continuous feedback resonates very 

well with one of the core DevOps goals—product 

improvement through customers’/stakeholders’ 

feedback. Merely delivering your applications faster 

doesn’t equate to successful business outcomes 

or increased end-user satisfaction. You’ll have to 

ensure that you and your end users are on the 



same page with your releases. That’s exactly what 

continuous feedback can help you do, and that’s 

why it’s an important DevOps component.

Continuous Operations

Continuous operations is a relatively newer 

concept. According to Gartner, continuous 

operations is defined as “Those characteristics of 

a data-processing system that reduce or eliminate 

the need for planned downtime, such as 

scheduled maintenance. One element of 24-hour-

a-day, seven-day-a-week operation.” The goal of 

continuous operations is to effectively manage 

hardware as well as software changes so that 

there’s only minimal interruption to the end users. 

Setting up continuous operations in your DevOps 

pipeline will cost you a lot. However, considering 

the massive advantage that it brings to the table—

minimizing core systems’ unavailability—shelling 

out a lot of money for it will probably be justified in 

the long run.

Stages of a DevOps Pipeline

Although it’s common to find variations in DevOps 

pipeline representation, the basic stages include 

develop, build, test and deploy.

Develop

At this stage, the developers write the software 

code and push it into a source control repository. 

After the code passes through the repository, 

source code integration takes place. There are 

several code repository hosting services available 

on the market, along with an underlying version 

control system. Selecting the best repository can 

be tricky as it depends on different factors, such as 

your project and team size, its release schedules, 

and so on.

Build

In the subsequent stage, “build,” the application 

is built by using the integrated code in the source 

code repository from the previous phase.



Test

The next step in the DevOps pipeline is “test,” 

wherein the testers execute different tests such as 

system tests, functional tests, and unit tests on the 

build from the last phase. If any issues are found 

at this phase, then such issues are sent back to the 

developer for resolution.

Deploy

The final stage is “deploy,” where once the 

production environment is created and is 

configured, the final version of the build is 

deployed.

Thus, the above-discussed simple DevOps pipeline 

starts from code being checked into the source 

control repository until its deployment to the end 

users in the final stage. There’s also a feedback loop 

that connects all the mentioned stages and ensures 

that the process of application delivery is on the 

move at all times.

Deployment Pipeline Automation

DevOps calls for automating everything that can 

be automated. And except for some rare instances, 

automation is generally a good idea. There are 

several deployment pipeline automation tools 

available on the market. And such tools automate 

code validation and delivery across the entire 

life cycle. The obvious benefit of automating 

your deployment pipeline is that you drastically 

minimize the time taken for deployment execution. 

Writing deployment scripts for specific applications 

consumes a lot of time. However, when you keep 

working on a product for extended periods, you’ll 

be able to modify the existing process to automate 

even more application deployments.

Steps Involved in DevOps Pipeline 

Implementation

If you’re considering doing DevOps or are in 

the initial stages of implementation, you should 

know that a lot of things go into implementing a 

DevOps pipeline from scratch. There’s no single 

correct answer to the question “How exactly do I 

implement DevOps?” It depends on different factors 

such as the size of the organization, the budget, the 

toolsets, and the business goals expected out of the 

implementation, to name a few. This section of the 

article discusses some of the common steps that 

involve any DevOps pipeline implementation.

Chalk Out and Establish the DevOps 

Strategy

Before you commence your DevOps journey, it’s 

first important to clearly define and establish the 

DevOps strategy. Also, up-front planning goes a 

long way for a successful transition to DevOps. 

Remember that, at its core, DevOps is a mindset. 

So, it’s about the cultural shift in people as much 

as the other processes and tools. That’s why 

a best practice at this stage would be bringing 

together the people from different departments 

and facilities to collaborate and work toward the 

unified goal—speeding up the SDLC while ensuring 

high software quality. You should also ensure 

sufficient provisioning of IT infrastructure through 

infrastructure as code (IaC).



Stick to Agile Principles

Following agile principles in addition to DevOps 

methodologies can be a great move. While they’re 

two different software development methodologies, 

they generally complement each other. So, a 

coexistence of agile and DevOps can be beneficial 

to organizations. Marrying agile with DevOps 

should result in an increase in bug-free code 

and minimized average development time. Agile 

focuses on software delivery in iterations. When 

you also use CI/CD for each of those iterations, you 

accelerate time to market as well.

Do Continuous Everything

Saying “continuous everything is the mantra of 

DevOps success” is justified. If you’re looking to 

achieve maturity in your DevOps practice, you 

should strongly consider adopting at least CI/CD 

and CT workflows. Continuity is very central when 

it comes to DevOps as these processes ensure 

that the code quality and deliverable time are 

maintained across each stage of the pipeline.

There are several other best practices to have at the 

back of the mind during DevOps implementation. 

As much as possible, try to use open-source tools 

to facilitate a smooth integration. Choose your 

DevOps projects wisely. It’s also a good idea to 

focus on the cultural mindset and establishing 

standard metrics to measure your DevOps success.

Managing CI/CD From the 

Application Portfolio Management 

Perspective

Application portfolio management (APM) was 

developed during the period of the critical 

millennium bug. And since then, it has come a 

long, long way. Today, APM is highly important as 

it facilitates enterprises to boost revenue through 

digital transformation.

APM has become an integral element of DevOps 

as it breaks down the intricacies to improve 

speed and agility. Big organizations find it hard 

to adopt the present technology, facing many 

practical challenges of modernizing and deploying 

their application without disturbing their existing 

portfolio. To bring out the best outcome in this 

situation, managing a CI/CD pipeline with APM 

is essential. If DevOps implementation results in 

better agility, accuracy, and speed, APM brings 

about an obvious business value to organizations 

with DevOps and strives to produce flawless results 

in the CI/CD environment.

APM Implementation to Handle Delivery

Here’s how you can leverage APM to manage your 

delivery operation:

Structure the Process

To design the process, you need to collect data 

on the present IT conditions and the insights on 

applications and their functionalities to build 

the roadmap for a high-revenue business. With 

the gathered data, you can segregate them into 

relevant and irrelevant data to structure the 

process to avoid redundancy.

Evaluate

Assess the applications to generate a detailed 

report on the usage and functionality of the 



applications. You’ll have to look into every aspect of 

the application to make any changes in the future. 

For instance, if you want to upgrade an application, 

you can easily identify its present dependency and 

impact to manage the transition.

Define IT Transformation

Create and test plans for a wide comparison 

involving risks, quality, and feasibility. With the 

relevant outcomes, choose the plan that best 

suits your company and implement that 

transformation process.

As you adopt APM, you can drive DevOps to 

improve quality and enhance reliability. Further, 

by rationalizing the application portfolio, you can 

help companies significantly reduce cost and avoid 

redundant applications.

As one of our key features, Plutora provides 

oversights into CI/CD pipelines for product/release/

portfolio managers, and even CIOs to some extent, 

so that they can see what features are currently 

deployed in a release.

Conclusion

Hopefully, this resource has touched on 

the key elements of a DevOps pipeline and 

has taken you a little closer to the DevOps 

pipeline ocean. The concepts explained in 

this paper constitute only a small chunk of a 

complete DevOps pipeline. As you’d know by 

now, you have to have your hands on a lot 

of things at once to build a DevOps pipeline 

from scratch. But once the pipeline is in place, 

it’ll completely redefine how you go about 

building your software and how you deploy 

it. And, of course, you’ll reap a lot of business 

and technical benefits in the long run.

If you’re considering going forward with a 

DevOps deployment pipeline or aren’t sure of 

how to achieve pipeline maturity, our service 

offerings can help you out!



Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality 

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid 

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step. 

The Plutora Platform ensures organizational alignment of software development with business strategy and provides 

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through 

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization 

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model 

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success 

Visit www.plutora.com/devops to learn more.


