
DevOps Maturity 
Path: Check Your Level
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst. 

Nullam dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra. 

Nam ut dolor urna. In rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet. 

DevOps At Scale: Chapter 4



For many organizations, DevOps 

maturity is an opaque concept. Someone 

sets up a Jenkins or CircleCI pipeline, and 

they say that they’re “doing DevOps.” 

These organizations then struggle to 

know which steps to take to grow their 

DevOps culture.

The problem with their definition is that 
it’s binary, and it’s simplistic. If you have 

a continuous integration pipeline, you’re 

a DevOps organization. If you don’t, you 

aren’t.

Instead of approaching DevOps from a yes/no 

perspective, it’s far better to treat it like a living 

organism. DevOps is about adopting a mindset of 

continuous improvement. The maturity of a DevOps 

organization is another place where that mindset 

must take hold.

There are a number of facets common to 

every mature DevOps culture. By naming and 

understanding them, it’s possible to identify areas 

where a business’s culture is strong and areas 

where that same business is weak.

The Facets of DevOps Maturity

In this paper, we’ll talk about seven different 

ways that organizations mature in their DevOps 

culture. It’s important to remember that every 

organization—and every part of the organization—

won’t mature at the same speed through each of 

these facets. However, by identifying those facets, 

it’s possible to recognize the area where an 

organization is falling short and begin to shore 

up those weaknesses. It’s also an opportunity to 

reinforce strengths and use those strengths to lead 

the organization to new heights. Those facets are

Collaborations between teams

Automated configuration management

Release management

Continuous integration

Product mindset

Compliance difficulty

Continuous improvement mindset

The rest of this article will look at each of those 

facets at four defined maturity levels. Each level 

will have signposts that will help an organization 

recognize if they’re at that maturity level, 

as well as steps to take to move the organization to 

the next level.



Level 1: Testing the Water

Level 1 of DevOps maturity is for teams who 

are just beginning to test the waters of DevOps. 

These teams are very immature when it comes to 

DevOps. That doesn’t mean that they’re immature 

engineering organizations. Instead, their processes 

are usually static and familiar, but they might not 

be serving the organization well. Teams at this 

level will regularly experience projects that go way 

over time and budget. When they sit down to try to 

figure out what went wrong, they’ll make a huge list 

of things they’ve learned. Then they’ll proceed to 

repeat those same mistakes on the next project—

and the one after that.

How to Recognize If You’re at This Level

This level is where the hypothetical team that “does 

DevOps” by installing a Jenkins server lives. Teams 

at this level often times see operations as their 

own team, distinct from engineering or project 

management teams. They’re rarely consulting 

during the planning or early implementation stages 

of the project. Instead, they receive new code from 

developers or QA with little knowledge of how it 

works or how it to deploy it. Then they’re on the 

hook for trying to fit it into the rest of the system. 

The result is a heavily manual integration process. 

An operations employee might need to touch 

dozens of individual servers to make sure they work 

with the new code.

This kind of process means that there’s no 

consistency to the configuration of important 

servers. That’s because they were all set up 

manually. The team has a Jenkins server, but 

they’re certainly not using it for true continuous 

integration. Instead, they automate a few build 

steps and perform the rest by hand. That kind of 

piecemeal approach leads to individual scripts for 

every little process the team needs to complete. 

Scripts like those tend to quickly become unwieldy, 

and rapidly become completely unmanageable.

What’s more, the way that the team manages 

projects can introduce problems for the 

organization. Most organizations at this step still 

use a traditional waterfall project management 

structure, in which they think of each project as 

its own discrete journey that doesn’t carry any 

improvement to the rest of the business.While 

there is certainly still a place for waterfall project 

management, teams that focus on projects over 

the products they’re meant to serve struggle to 

improve those products in meaningful ways for 

their customers. They plan everything, then code 

all of it, then go through painful rounds of QA and 

compliance approvals before the code is ready to 

go to the operations team. Many times, they’ll do 

all that only to find that operations needs the code 

changed again.

What to Do If You’re at This Level

A team at this level should look at each facet 

of DevOps maturity and seek to improve 



incrementally. The best place to start is to recognize 

the team’s strengths and weaknesses as it pertains 

to continuous improvement. By adopting a more 

focused attitude and structured process for 

continuous improvement, teams will recognize 

that they can improve each of the other facets 

incrementally and independently.

From there, the answers start to become clearer 

on how to mature in other facets. If the operations 

team is too siloed, the engineering and project 

management teams find ways to break down 

those walls little by little, involving them earlier 

in the process. Operations can begin to adopt 

and standardize server configuration through 

configuration management tools. Engineering 

teams can begin to add automated tests to validate 

the quality of each software build. The project 

management team begins to shift their focus from 

undertaking big, challenging projects to thinking 

about the products their team supports and the 

best ways to improve them as a whole. Engineering 

teams involve compliance and QA organizations 

much earlier in the SDLC.

Level 2: Holding Your Breath

A team at this level has largely committed to their 

DevOps journey but may not be seeing promised 

returns yet. Some changes have certainly improved 

things for the team, but some feel like a lot of busy 

work for little gain.

How to Recognize If You’re at This Level

Teams at this level have broadly adopted 

automated configuration management, and 

they’re feeling the benefits. Automated software 

provisions and enforces configuration for each 

server. Operations staff and engineering staff 

regularly converse about upcoming feature code 

and bug fixes. New deployments don’t take the 

operations team by surprise. They’re able to plan 

out what configuration changes code will need, and 

they implement those changes while engineers are 

developing the feature. Freed from the necessity 

of always being reactive, the operations team can 

start to collect some meaningful data about the 

performance of new features. They can say with 

certainty which features are introducing the most 

bugs, how many people are using new code, and 

where the highest rates of return are localized.

While that data is valuable, most members of 

the team don’t really know what to do with it yet. 

Moreover, there are still some hiccups. It’s likely 

that the project management office still thinks 

of software releases as big projects. Groups of 

disparate, unrelated features are bundled together 

into big projects because releases are still a major 

event and customers won’t wait for another 

release. The concept of a minimum viable release is 

still foreign, and the result continues to be lengthy 

quality assurance and compliance timelines. 

While those teams are a part of the planning and 

design conversations, they’re not fully integrated. 

This means that QA and compliance still takes a 

significant amount of the time between when code 

is written and when it’s deployed.



At this point, the team probably has a real 

continuous integration system, and it works—

mostly. Operations staff likely still needs to 

manually intervene on a regular basis.

What to Do If You’re at This Level

One of the biggest enemies at this level is 

complacency. Many teams will reach this level after 

months or years of progress and simply stagnate. 

They’ve created a process that “works for them” and 

lack people with the vision or political power to spur 

them onto more advanced steps.

Much like the fixes at level 1, the best way 

out of level 2 is through constant incremental 

improvement. Now that they’ve started 

collecting metrics about their team and software 

performance, teams should critically evaluate 

those metrics to see which are working well and 

discard those that don’t. Operations teams 

should be constantly identifying new ways to 

automate troublesome manual steps in the 

deployment process. Engineers should continue 

to create more and better automated tests. These 

tests give both the engineering and QA teams more 

confidence that code does what it says and doesn’t 

break anything.

Project management teams should continue to 

refine their processes to focus on releasing the 

minimum viable product for each release. Along 

with changes to the operations, QA, and 

compliance timelines, the release cadence should 

speed up so that more, smaller releases are 

happening more frequently.

Level 3: Diving in Head First

A team at this level has made it over the hump of 

level 2. Continuous improvement is a company 

cornerstone, and employees in every part of the 

engineering organization regularly identify new 

areas for improvement.

How to Recognize if You’re at This Level

Teams at this level devote themselves to 

continuous improvement. They fanatically measure 

how their changes impact the business bottom line. 

Also, they have outstanding metrics that allow them 

to quantify the impact individual releases have 

on the overall performance of the software. Each 

team can reliably point to which feature introduced 

individual bugs. Other metrics help identify which 

new features slowed down (or sped up!) server 

performance. The deployment process is nearly 



automated, but it might require one or two manual 

interventions to make sure they go smoothly. The 

project management team works closely with 

developers, operations, and compliance teams 

when planning improvements to the product.

The compliance organization is directly involved with 

code reviews so that they can identify concerns while 

the code is written. Your continuous integration 

system works perfectly well over 90 percent of the 

time. A broad suite of high-quality automated tests 

drastically shortens the QA window. Fewer bugs are 

written, and teams are confident new features do 

what they’re supposed to.

Things aren’t perfect here, though. It’s likely that 

there are still some fights about what should go 

into a feature or release. Project management 

still approaches a code release as a discrete event 

instead of a series of continuous, incremental 

software changes. This means that there’s 

difficulty knowing what should or shouldn’t go 

into a particular feature. The company may also 

lack sufficient data from customers to know how 

to make those decisions without relying on gut 

feelings or guesses.

Being at this level can also lead to a feeling of 

frustration, as technical teams have far more 

metric data than management. That data might be 

difficult to access or challenging for management 

to understand, meaning that they make decisions 

organizational telemetry suggests will be worse for 

the business.

What to Do if You’re at This Level

Once again, the process for moving past this level 

is continuous, incremental improvement. The next 

step for project teams past this point is to 

begin to unite data from the operations team 

directly to conversations with customers. In this 

way, they can identify the minimum viable 

product for each feature. Those metrics should 

also become a direct part of the decision-making 

portfolio for upper management, meaning that 

they can make decisions with effective data to 

support their thinking.

Ideally, teams at this level start to involve 

compliance teams directly in the planning 

process. Insecure and non-compliant code never 

makes it into the software at all. The operations 

team continues to work to fully automate their 

continuous integration pipeline, ironing out every 

need for manual intervention.

In short, changes at this level are ones of 

refinement, not tectonic shifts.



Level 4: Improving Lap Times

A team at this level has fully embraced the 

DevOps culture.

How to Recognize if You’re at This Level

A team at this level has integrated continuous 

improvement and the measurement of 

performance directly into their DNA. Engineering 

is able to accurately say how many bugs they’re 

introducing and what impact new code has on any 

environment. That data is directly tied to customer 

satisfaction levels, and the compliance organization 

has extensive input into every decision made by 

technical teams. Both operations and management 

staff are able to use hard numbers to describe the 

risk of adding some new feature 

or delaying a bug fix. How teams describe those 

risks can vary. Sometimes they’ll discuss downtime 

or customer satisfaction metrics. Sometimes it’s 

server performance. Whatever the metric, everyone 

involved in the process understands the data and 

the risk around that decision.

By this point, compliance and quality assurance are 

so built into the development process that they sign 

off on code shortly after it’s written. An extensive, 

high-quality suite of tests means that deployments 

happen very soon after code has been finished. 

Organizations at this level will often deploy code 

multiple times per day. That’s in contrast to teams 

at level 1, who deploy once or twice per quarter.

The bedrock of DevOps, the continuous 

improvement mindset, is so ingrained that teams 

can accurately describe how they’re improving. It’s 

not just that, either; they can say by how much and 

over what time windows. The product team makes 

decisions about what features to prioritize based on 

hard data and conversations with key customers.

In short, a team at this level is highly refined. Their 

process is well-defined, and everyone understands 

not only their role but also which steps to take to 

improve their performance in that role. Every day is 

a new opportunity to do things a little bit better.



Maturity Is Understanding That You 

Can’t Do it All at Once

These different levels seem clearly delineated, but 

they’re not. In reality, most teams don’t recognize the 

steps that led them from one level to another. More 

likely is that some series of changes pushes them to 

a new level and they only recognize the transition 

in hindsight. Immature teams will approach this 

process by trying to make a dozen changes at once. 

More often than not, they find that this means they 

fall flat on their faces.

Mature teams approach moving through these 

levels as a process. Again, the heart of DevOps is 

continuously improving a team’s performance in a 

variety of ways. Instead of attempting to take a giant 

step, mature teams take many little ones.

That’s the key trait of DevOps maturity: the ability to 

recognize places where a team is falling short and 

identify small changes to make over time in order to 

fix those things. Everything else flows from that.



Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality 

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid 

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step. 

The Plutora Platform ensures organizational alignment of software development with business strategy and provides 

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through 

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization 

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model 

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success 

Visit www.plutora.com/devops to learn more.


