
DevOps Methodology: 
Aligning your Organization
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst. Nullam 

dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra. Nam ut dolor urna. In 

rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet. 

DevOps At Scale: Chapter 3



Previously, we’ve covered what DevOps is and how 

it can benefit your organization. In this article, we’ll 

cover the changes you’ll need to make to achieve 

DevOps.

DevOps can provide several benefits, such as faster 

delivery of new features, increased stability, and 

better collaboration. It improves the entire service 

life cycle, but it requires a significant structural 

shift to implement. To do this, you’ll need to look at 

three key areas:

 Cultural change

 DevOps processes

 A shift in technology

It takes several roles and responsibilities to 

incorporate DevOps effectively. Some of these roles 

are unique to DevOps. Others are part of traditional 

software development, but implementing DevOps 

will mean adjusting responsibilities for them. We’ll 

define each role and consider how it contributes to 

DevOps success.

DevOps and Cultural Change

The most important step in realigning as a DevOps 

organization is getting everyone to share the same 

goals. This step is frequently the most challenging.

A fundamental tenet of DevOps is increased 

communication and collaboration between teams. 

This most commonly applies to development 

and operations teams, but it can also apply to 

test engineers, product managers, executives, 

and business teams. This change can represent a 

significant cultural shift within the organization, 

particularly if teams are used to working mostly in 

isolation, with clear divisions of responsibility.

How can you help bring about this level of change? 

Trust, honesty, and responsibility are key.

Changes must begin with top-level management. 

These managers will need to convince the rest 

of the organization that they all share a common 

goal: better software, delivered more quickly. 

Understanding of a shared goal will help align 

different teams rather than pitting them against 

one another. Ideally, this will result in increased 

empathy, which will then facilitate trust between 

teams—especially as they see functions they once 

controlled being adopted by other teams as well.

Workforce transition planning is also essential. It 

will ensure adequate training for employees who 

are taking on new functions. This type of planning 

will help ease employee concerns and build trust in 

the overall transition to DevOps.



DevOps Processes

Once your organization has successfully 

implemented this cultural change, the next step is 

to update your processes.

DevOps processes are based on the idea of 

continuous improvement. Teams often do this 

by setting up an automated deployment pipeline, 

which enables quick, reliable delivery of new 

features to users. A typical pipeline contains three 

stages: continuous integration, continuous testing, 

and continuous deployment. This type of pipeline 

allows your organization to integrate new features 

into the code base, test them, and roll them out on 

a continuous basis. In most cases, large segments 

of the process will rely on automation to increase 

efficiency and reliability.

Continuous Testing

Integrating testing throughout the development 

process is critical for catching issues early. This 

becomes especially important as your organization 

increases its level of automation. Testing within 

the pipeline ensures that new features work as 

expected before they are released, from check-in 

through to delivery.

Monitoring and testing everything, however, may 

not be possible and is probably not necessary. So, 

how do you decide what is important? Focus on 

these categories:

 Development cycles

 Deployments

 Vulnerabilities

 Server health

 Application performance

In particular, vulnerabilities point to the need for 

security testing early in the software development 

process. To minimize the risk of a security failure, 

testing for vulnerabilities should become everyone’s 

responsibility, not limited to a single team at the 

end of the development process. This mindset is 

often referred to as DevSecOps.

If your organization is taking care of these 

categories, it will be easy to notice quickly if 

anything isn’t operating as expected.

Governance and Compliance

Monitoring software development is important 

when it comes to satisfying governance 

requirements and compliance regulations. 

Governance involves the established company 

and IT standards that your services are required 

to follow. Compliance means that the software 

development life cycle adheres to company 

standards including regulatory requirements 

for data storage, business operations, and other 

practices. Each organization must have a strategy 

for following governance and compliance. Defining 

workflows that meet governance standards and 

tools that monitor releases to create traceable 

audits provides organizations with the ability to 

review compliance rates and identify root causes of 

non-compliance in order to improve processes.

You may find that fulfilling governance and 

compliance requirements slows down your 

releases. Having multiple pipelines can also lead 



to a misalignment between process governance 

criteria and configurations. Both of these issues 

are related to issues with policy implementation, 

execution, resource coordination, and end-to-end 

oversight.

To make sure your organization is meeting all 

requirements, consider using a management 

tool. Several of these tools exist for managing 

compliance and risk, and in some cases they’ll 

allow you to manage performance management 

as well. Plutora’s platform is a leading example of 

this, allowing for control of quality and compliance 

across all projects.

Value Stream Mapping

A value stream is the flow of a product feature from 

check-in to delivery that creates business value. 

Value stream mapping allows you to visualize the 

entire process in an application’s development and 

delivery. This bird’s-eye view allows you to identify 

constraints in the process that you or your team 

can address and improve. Or you can calculate 

which activities are generating value and 

optimize them.

Value stream maps also provide insight into 

performance baselines and other metrics through 

measured time-to-value in different stages of the 

process. This post summarizes the benefits of value 

stream mapping:

The goal of value stream mapping is to 
provide a tool to help migrate the process 
from what is actually happening to what 
should be happening.

Traditionally, people mapped value streams by 

hand. While beneficial, this method was prone 

to errors. Manual maps depend on estimated 

timing between steps, so they may be unable 

to effectively capture a continuous, fluctuating 

process. Modern tools allow for more accurate 

tracking and reporting of process data, which 

in turn provides a better visualization of your 

organization’s flow of value.

Value Stream Management

Software delivery performance monitoring lets your 

organization track performance outcomes. These 

include:

 Deployment frequency

 Mean time to recover

 Lead time for changes

 Change failure rate

While these outcomes are informative for software 

delivery throughput and stability, just viewing 

them doesn’t provide insight into the processes 

that could improve an organization’s metrics. On 

the other hand, value stream mapping captures 

the processes involved and provides insight into 

how to improve these performance outcomes. 

Value stream management extends this idea by 

including more support for other development 

life cycle management functions. For example, 

you can coordinate and configure activities within 

multiple pipelines to run with fewer delays from 

inefficient sequencing. It’s also possible to oversee 

all active environments because you can simplify 

and centralize all configurations, code changes, 



and scheduling. The result is a powerful tool that 

allows for continuous improvement across your 

organization’s entire platform through small, 

localized improvement experiments.

As a market leader, Plutora is the most 

complete value stream management platform 

and the only platform that provides live metrics 

and analytics portfolio-wide. It was built to 

support the complexity of enterprise software 

delivery, including:

 Multiple release processes

 Governance and compliance requirements

 Intermixed methodologies

 Diverse collections of tools

Plutora unifies and streamlines all the 

disparate components involved and provides 

complete visibility and control of the portfolio. 

The result is not only accurate data but also 

unparalleled insights that will help guide your 

organization’s continuous improvement in 

application delivery processes.

A Shift in Technology

The third key area of change needed to achieve 

DevOps alignment is a shift in technology. Although 

tools alone will not be very effective, providing the 

right people with the right tools will greatly increase 

your chances of success.

Primarily, these tools involve incorporating 

automation. Doing this allows tasks to be easily 

repeated. Likewise, it reduces the risk of individual 

error, which makes it more likely that anyone can 

reliably accomplish the task. Automation can also 

help you reduce costs, improve testing, and speed 

up releases.

Other key DevOps tools include:

 Source code repository

 Build server

 Configuration management

 Virtual infrastructure

Roles and Responsibilities

Successfully shifting an organization to become 

more DevOps aligned is a complex process. 

We’ve discussed the necessary tools and 

technologies, but relying on tools alone is not 

enough. Effectively incorporating DevOps depends 

on having the right people with the right skills and a 

willingness to collaborate.

DevOps doesn’t mean including a third category of 

people in addition to those working in development 

or operations. Rather, DevOps involves aligning 

everyone toward a common goal—a streamlined 

process for creating business value.

“This all sounds great,” you might say, “but what 

should a DevOps team look like?”

There’s no standard format for a DevOps team. 

However, consider including these roles as a 

minimum.



DevOps Evangelist

We’ve already discussed the need for a significant 

cultural shift when adopting DevOps. Promoting 

and driving that kind of change requires a leader. 

Often known as the DevOps evangelist, this 

individual owns the change and is familiar with the 

benefits of DevOps. More important, this person 

is able to communicate these benefits to other 

members of the team. This communication ensures 

buy-in and a unified commitment to change. 

The DevOps evangelist is also responsible for the 

success of DevOps processes and people. The 

evangelist determines which roles are necessary to 

optimize the process and what training is needed 

so that everyone is prepared and empowered to 

make the necessary changes.

Product Owner

The product owner is the key stakeholder in 

the project. This person holds the vision for the 

final product and communicates it to other team 

members by prioritizing the backlog. They are 

also responsible for keeping product feature 

development in line with business priorities.

The product owner is traditionally a very “project-

centric” role, but product owners in DevOps 

organizations must shift their focus to the bigger 

picture. Instead of fixating on implementing 

features, the goal becomes efficient operations 

over the entire life cycle of the product. In addition 

to functionality, so-called nonfunctional tasks—such 

as adding logging or database optimization—should 

be equally important. These are related to the 

optimal running and operating of the product, both 

now and over its lifetime.

Release Manager

Also known as a release engineer or product 

stability manager, the release manager is 

responsible for overseeing the overall progress of 



a release. This includes managing the integration 

and coordination of development, testing, and 

deployment to support continuous delivery. In this 

regard, a release manager is similar to a traditional 

project manager. Unlike a project manager, 

however, the release manager also needs technical 

skills and knowledge to run and maintain the 

entire application delivery tool chain, as well as to 

measure and interpret metrics on all tasks.

Automation Architect

Given the importance of automation within 

DevOps, the automation architect plays a vital 

role. Also known as integration specialists or 

automation experts, their job is to analyze, design, 

and implement strategies and tools for continuous 

deployment.

The goal of the automation architect is to provide 

an efficient and reliable automated environment for 

other team members. This role becomes especially 

important with distributed teams.

Software Developer/Tester

The role of software developer is integral to 

any software organization. Within a DevOps 

environment, however, the role comes with 

increased responsibility.

In addition to writing code to meet specified 

business requirements, developers must also 

perform unit testing, deployment, and ongoing 

monitoring. Incorporating testing into the role of 

the developer makes finding and fixing issues more 

efficient. Of course, in order to maintain quality and 

improve efficiency, it helps to automate the testing 

process as much as possible.

Experience Assurance

Most people are already familiar with quality 

assurance. QA team members confirm the quality 

of a product by determining whether it meets 

requirements. Within DevOps organizations, a 

new type of control becomes necessary. Instead of 

simply testing functionality, team members must 

test the overall user experience as well. Experience 

assurance (XA) professionals make certain that 

the final product has all the features that were 

originally specified.

Security Engineer

In traditional software development, security is often 

an afterthought. Increased threat of attack and fear 

of noncompliance are strong motivations to make 

security a priority, but adding it on at the end is still 

not enough. In aligning with DevOps, it is important 

for teams to build security into the product. 

Beginning early in the process, security engineers 

work with developers and make recommendations. 

The result is a final product that resists attacks.

Shifting Left

“Shifting to the left” means moving something into 

earlier stages of the product life cycle. It started 

in the 1990s, when people discovered that the 

then-standard waterfall methodology resulted in 

poor-quality software that required expensive fixes. 

Testing was happening too late in the production 

timeline—in other words, too far “to the right.” 

We now know that discovering defects later in the 

pipeline makes them increasingly expensive to fix.



Testing and Deployment

In DevOps, shifting left requires two key practices: 

continuous testing and continuous deployment.

Continuous deployment results in regular build 

deployments, which allows continuous testing to 

take place quickly and efficiently. Both of these 

practices are possible through the use of cross-

functional teams instead of the old model of 

development, operations, and QA teams operating 

in separate silos.

Moving testing into earlier stages of the pipeline 

is one method of shifting left. The role of software 

developer/tester is an obvious example. This

 role incorporates the need for testing in early 

stages of development. Release managers 

also work directly with continuous testing and 

continuous deployment.

Even with testing, sometimes unstable code 

can be introduced into the release branch. If a 

developer commits work that causes the build to 

fail, the result is not only compromised quality 

and decreased velocity but also a breakdown in 

trust between team members as they try to locate 

the source of the issue. A simple way to solve this 

problem is by introducing a gated check-in system. 

This is a software integration pattern that allows 

code to be verified prior to each commit—and only 

incorporated once it has returned successfully.

Other Ways to Shift Left

Shifting left applies to more than just testing and 

deployment. The security engineer shifts security into 

the development stage. Automation architects build 

automation into the pipeline as early as possible. 

DevOps evangelists, product owners, and experience 

assurance professionals also benefit from continuous 

deployment and testing by using the feedback they 

receive to improve design early on.

Finally, shifting left occurs when non-functional 

requirements are incorporated throughout the 

development lifecycle. During each stage of the 

process, these requirements must be addressed 

in order to meet the given acceptance criteria. 

The result is that tasks related to the operation of 

the system are not pushed off in favor of feature 

development, which would make them increasingly 

expensive to implement.

Conclusion

Becoming DevOps aligned can be challenging. 

Company culture, established processes, and tools 

and technologies used will all require significant 

changes. This process won’t happen overnight. 

However, the benefits of incorporating DevOps 

vastly outweigh the challenges it presents. Shorter 

development cycles, faster innovation, reduced 

failures, recovery time, and better collaboration are 

just some of the benefits of a DevOps organization.



Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality 

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid 

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step. 

The Plutora Platform ensures organizational alignment of software development with business strategy and provides 

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through 

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization 

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model 

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success 

Visit www.plutora.com/devops to learn more.


