
What is DevOps?
Morbi eget varius tellus, finibus egestas purus. In hac habitasse platea dictumst.

Nullam dapibus turpis lectus. Curabitur consectetur dui vel elit cursus viverra.

Nam ut dolor urna. In rutrum nibh eleifend lectus luctus, in rhoncus nisl laoreet.

DevOps At Scale: Chapter 1

</>

Demands on software teams are as high as

they’ve ever been. Businesses require that

software has fewer bugs and more features.

What’s more, they need it faster than ever.

Savvy software teams look for new ways to

meet these challenges head-on. Sometimes,

they try out new project management

systems, like agile approaches. Other times,

that means trying new tooling that makes it

easier to manage their dependencies, like

virtual application containers. They might

transition to new programming languages

or integrate new libraries.

One trend that’s gained momentum over the

past decade is adopting a DevOps style of

resource management and deployment. Teams

who find success with DevOps say that it helps

them deploy more code more quickly—and

they do so with less downtime and fewer issues.

For anyone who’s spent time following trends in

technical management, DevOps is a concept that

pops up repeatedly.

What Exactly Is DevOps?

DevOps is somewhat difficult to define, much like

its cousin, agile software. The reality is that the

definition will vary a bit from team to team. Each

team will tweak DevOps methodology to suit their

own unique needs. With that said, there are some

unifying factors between DevOps implementations.

For starters, DevOps means breaking through silos

between your product management, development,

and operations teams. Instead of working

independently from one another, those teams

will work together closely to define new features.

Mature DevOps teams approach infrastructure

management and deployment management by

automating those processes.

It’s important to remember that teams will be more

or less mature in each of those categories. A team

will naturally progress more quickly in one area

over another when adopting a DevOps culture.

There is no singular DevOps authority to say which

teams “do DevOps.” However, the most effective

teams will move toward maturity in all of those

areas. Their primary goals will be to remove walls

between teams so that they can work more closely

together. They’ll seek to automate code testing

and integrate security checks into the process of

building code, instead of saving it for when the code

is “done.” The traits of highly successful DevOps

teams are pretty easy to spot, even when they

might not do everything perfectly.

Why Do Teams Choose DevOps?

In a traditional software life cycle, operations staff

are left off projects until the very end. Their job is

to deploy code that developers have written, with

minimal input on the code’s shape or behavior.

Anyone who’s worked in software for a decent

length of time has seen the problems this approach

causes. In the worst cases, the project itself needs

to be reset because the code the developers

delivered simply can’t run in the environment

mandated by the business.

Needless to say, that kind of outcome is a serious

problem. It’s almost always a guaranteed failure for

the project. To eliminate these kinds of problems,

the development team involves operations

staff much earlier in the project’s development.

They work side by side with developers to

make decisions about things like infrastructure

requirements and software libraries.

At the same time, many businesses transitioned

to agile development methodologies. Those

methodologies eschew making big up-front

plans for projects, instead preferring an iterative

development style.

When you combine these two mentalities, you

create an environment where developers are

working closely with operations staff to develop

code and deploy it very quickly. That, at its heart,

is what DevOps is all about. Teams that adopt a

DevOps approach to code report a number of

serious benefits.

How Do Agile and DevOps Fit

Together?

The DevOps movement grew out of the agile

software movement. As teams moved further

away from big, world-altering releases, things

became more difficult for operations teams. A

team that releases every three months doesn’t

experience a lot of extra stress from any individual

part of a release. That same team releasing code

to production every two weeks will quickly find

that there are parts of their release process that

simply don’t scale. Operations staff find themselves

repeating time-consuming and tedious manual

tasks for each release.

So, savvy operations teams began automating

as many parts of their releases as they could.

These teams embraced one of the core tenets of

DevOps—continuous improvement—to constantly

look for new ways to make their deployments

simpler. Instead of manually provisioning servers,

they started defining their environments using

code. They adopted continuous integration systems

to constantly test new code for fitness. Above all,

they engaged teams outside the operations staff to

knock down barriers to deploying new code safely.

Make deployments simpler

#
 o

f
M

a
n

u
a

l
T

a
sk

s

of Releases

Automation is
necessary

Operations
under stress

Define environments
using code

Adopt continuous

integration

Work closely with other

teams to define features

1

2

3

What Are the Core Tenets of

DevOps?

As noted, each team defines DevOps a little bit

differently. There is no one true DevOps method.

With that said, there are common attributes that

nearly all DevOps teams share. Each of these

attributes is important and plays a key role in

delivering the kind of results that DevOps teams

love.

Continuous Integration /

Continuous Delivery (CI/CD)

Continuous integration and continuous delivery (CI/

CD) are a core part of the DevOps workflow. The

goal of CI/CD is to reduce the time between code

being written and deployed. In traditional waterfall

project management teams, it might be months

between a developer writing code and deploying

it. Even in an agile team, the time window between

writing code and deploying it can be weeks. CI/CD

aims to reduce this time window down to days or

even hours.

CI/CD itself is fairly simple in practice. It requires

that developers write extensive software tests

to confirm that when they make a change, the

codebase still behaves properly. These tests run

automatically every time the developer pushes

code to source control. That’s the CI part. When

those tests are well designed, the development

team is confident that the code they write will work

properly in production.

Because the development team is confident about

their code, the operations team can deploy as soon

as tests pass. This is the CD part of CI/CD. On teams

with mature CI/CD processes, these deployments

can happen dozens of times per day. That kind of

turnaround means customers are using new code

as soon as possible.

The most mature software teams practice

blue-green deployments, where they have two

production environments running simultaneously.

When the team releases a new version of the

software, they deploy to the “green” instance while

the “blue” handles customer requests. Once they’ve

tested “green” to ensure it works, they promote

“green” to “blue”—making the version that was

previously the primary production environment into

the secondary environment. Now the new version

of the code is handling requests from customers

without even a second of downtime. Advanced

teams even use feature flags to ship unfinished

features to production, but avoid turning them on.

The newest features are always on production, and

can be switched on as soon as they’ve completed

testing, without needing a deploy.

Business

Test Yes

Does it work?

Customer

No

Promote

green to blue

PRODUCTION ENVIRONMENTS

Deploy

Use blue-green deployments
to reduce downtime and risk

Infrastructure as Code

CI/CD carries some important requirements. For

starters, teams need it to be trivial to deploy any

commit within an application. That requirement

means that applications can’t have laborious

deployment processes or difficult-to-install

libraries. If it takes an hour of labor to spin up a

server for a service, it’s very difficult to deliver the

aforementioned blue-green deployments.

To solve this problem, operations teams adopt

infrastructure as code (IaC). IaC is a system whereby

operations teams define the services necessary to

build and run an application directly within the code

of the application itself. Then, when the code has

finished testing, a software library translates that

code into running servers, hard-working databases,

and open network connections—in short,

everything the team needs to deliver their work to

the customer.

IaC is the core of any CI/CD pipeline. When a team

truly adopts IaC, deploying a new service requires

minimal to no intervention from a dedicated

operations engineer. This is what we mean when

we talk about operations teams adopting the

patterns of the software development team.

Instead of babysitting a server and making sure it’s

running smoothly, operations staff develop code to

address problems before they ever crop up.

Cross-Team Collaboration

At its heart, DevOps enables collaboration between

development and operations teams. The two

teams work closely together to plan and code

both the logic and environment that a new feature

will run in. Instead of a horrible project in which

the operations team has to tell stakeholders

that a project needs to be restarted, they’re

involved with the planning from the word “go.”

This collaboration is the successful outcome of a

DevOps culture, but it’s also the grease that keeps

the teams’ wheels turning.

Effective DevOps teams don’t end their

collaboration just between developers and

operations. Because the technical team can turn

around new feature requests much more quickly,

it’s easier for technical teams to collaborate with

other parts of the business. Instead of waiting

months to see a new bit of software deployed,

stakeholders can test new code within days or

weeks of requesting it. This means that business

teams place more trust in technical teams, and both

teams can plan more effectively.

A healthy DevOps culture approaches the ideal of

an agile software environment. The technical

teams sit down with business stakeholders on a

regular basis and hear what the business needs

them to work on. They then do a bit of planning

and hop right into coding. That code is deployed

as soon as it’s finished, and the business can

start using it right away. Stakeholders within the

business then collect feedback on the new code

and formulate new requests from the technical

team. The process begins anew, and the software

gets better at every step.

System Performance Measurement

Once they’ve adopted DevOps for a few weeks or

months, some organizations start to feel stuck.

They have a difficult time knowing whether their

approach is working or they should tweak it. Their

teams started with grand ideas of CD and pain-free

deployments, but the reality has been far from

ideal. Instead, it’s been a lot of hard work, and their

software doesn’t feel like it’s progressed nearly as

quickly as expected.

Many organizations abandon the experiment

here. They simply forsake their new processes

and go back to the comfortable confines of their

previous project management systems. The best

organizations take a different approach, though—

they seek to measure their DevOps team through

the adoption of targeted metrics.

Some of these metrics will be on the process side.

The team will measure things like how long code

sits between the developer committing it to the

repository and the operations staff deploying it.

They’ll measure how much accumulated downtime

accrues due to deploying new software, and the

rate of new defects in the code. Plutora’s platform

tracks these kinds of metrics, making it easy to see

where your team is succeeding as they adopt new

iterative processes.

Many metrics will also be on the technical side.

They might measure average response times for

a critical service between different deployments.

That’ll tell the team whether new features

meaningfully degraded the overall performance

of the system.

By measuring these things, effective management

teams can build a cohesive picture of the health of

their system and their development team.

Product-Oriented Development

In many enterprises, projects rule the day.

Each new version of software is developed via

a project methodology. A project management

office organizes the features that they think need

to be included. Eventually, after several rounds

of politicking, these are sent to the developers,

who implement them without any feedback from

stakeholders. Once the code is “finished,” it

moves on to all sorts of regulatory checks, where

security and compliance teams ensure it meets

external requirements.

After passing all those gates, only then does the

software move on to the testing team. Once again,

a significant amount of code is rewritten to fix bugs.

The process repeats itself with user acceptance

testing. If any bugs slip through to the end user,

they’ll need to wait for fixes until the next release

comes out—if the project management office

includes those fixes.

Product-oriented development turns those systems

on their heads. Instead of planning all the features

of a release at the beginning, product-oriented

development seeks to deliver the simplest set of

features that can meet their customers’ immediate

needs, then improves them over time. The

development time is reduced significantly because

releases aren’t bloated with constant inclusions of

features that the PMO determines can’t wait for

another few months. Compliance timelines are

shortened because there is less code to evaluate,

and testing is simpler for the same reason.

The change to product-oriented development

increases the release cadence significantly. Not

coincidentally, adopting a product orientation is

a core part of moving to an agile development

culture. Those same changes are critical for teams

adopting a DevOps mindset and its focus on faster

releases and continuous improvement.

Continuous Improvement

All of these individual tenets come together to

work for the cornerstone of DevOps: continuous

improvement. Continuous improvement is the

principle of striving to do better at what you do

every time you do it, and it’s the cornerstone of

DevOps because all the other tenets build off of

it. CI/CD means that it’s easier to continuously

improve the overall quality of the code. IaC makes

it easier to continuously improve the deployment

process. Cross-team collaboration means that it’s

easier to make sure the team is always working on

the most valuable features and fixes.

At the core of continuous improvement is

system performance measurement. Teams that

know which parts of the process to measure

and do so effectively can target their work to

improve those processes. Teams that don’t

know how or what to measure fail at creating an

effective DevOps culture.

The hard part of adopting a continuous

improvement mindset is that it’s something that

each member of the team needs to do. Each team

member needs to be motivated to constantly look

for ways to improve their craft. The team members

need to be empowered to hold one another

accountable when another team member doesn’t

do their best work. This doesn’t have to mean

calling each other out for poor performance, but it

does mean that team members need to be able to

recognize that something isn’t up to par and stop

the team from deploying that code until it’s fixed.

How Can a Team Start With

DevOps?

Starting down the DevOps path doesn’t need to

be difficult or a big project. Remember that the

grease between the gears of a DevOps team is

collaboration, and the cornerstone principle is

continuous improvement. It’s possible to take

the first step toward a DevOps culture simply

by opening lines of communication between

developers and operations staff. Inviting

administrators to a planning meeting to solicit

their input on a new feature goes a long way. It

builds goodwill and starts a habit of collaboration

between teams. That team can do a little better in

subsequent planning cycles by limiting the size of

features and building on lessons learned from their

previous deployments.

Once teams have started collaborating, the

rock starts rolling downhill. Team members will

identify new ways to improve processes. Those

improvements feed into other processes and

other parts of the code. The result is a team that’s

adopted the principle of continuous improvement.

It’s important to remember that the concepts

surrounding DevOps didn’t spring fully formed from

the head of Zeus. They were developed by real

people doing real work over years of iteration. Any

team can walk that same path and learn many of

those same lessons over time. Team leadership that

recognizes the benefits of the DevOps culture will

step up and learn from people who’ve gone before

to help their team adopt DevOps more quickly.

DevOps Is Never Ending

The start of this paper posed the question, what is

DevOps? The truth is that DevOps is many things

to each team that adopts it. The universal constant,

though, is that DevOps isn’t a fixed target. Each

team must constantly adjust their expectations

and practices to improve their results. Even teams

that appear to have their entire DevOps approach

figured out will regularly reevaluate their processes.

The other parts of this series of white papers

explore the different ways that mature teams seek

to improve their DevOps processes. Some will focus

on processes, some on technology, but all of them

will cover how to think about improving DevOps

over time. That’s because DevOps is a never-ending

process of team improvement. Each team has to

investigate how to do that for themselves, and it’s

something they’ll figure out eventually. The good

news is that there are many people who’ve come

before who can help show new teams the way.

Plutora, the market leader of value stream management solutions for enterprise IT, improves the speed and quality

of software creation by capturing, visualizing and analyzing critical indicators of every aspect of the delivery process.

Plutora orchestrates release pipelines across a diverse ecosystem of development methodologies, manages hybrid

test environments, correlates data from existing toolchains, and incorporates test metrics gathered at every step.

The Plutora Platform ensures organizational alignment of software development with business strategy and provides

visibility, analytics and a system of insights into the entire value stream, guiding continuous improvement through

the measured outcomes of each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about DevOps?

Check our series of white papers about DevOps to learn

from the foundations, to the cultural change and maturity model.

1. What is DevOps?

2. The Benefits of DevOps Strategy

3. DevOps Methodology: Aligning your Organization

4. DevOps Tools: Why You Need Them

5. The DevOps Maturity Model

6. DevOps Pipeline: The Functional Building Blocks

7. Mastering the DevOps Process

8. Making your DevOps + Agile Transformation a Success

Visit www.plutora.com/devops to learn more.

