
Setting Up the Critical
DevOps Role of Enterprise
Release Management

WHITE PAPER

While the DevOps movement and associated technologies have garnered

much attention and fanfare, few have addressed the core issue—the handoff

from development to operations. In this white paper, we look at the pitfalls

of not acknowledging the importance of Release Management—a critical

DevOps function.

Release Management is the bridge between development and operations,

and you can strengthen that bridge with the right approach, tools, teams,

and processes. This white paper provides a tailored approach to creating

an efficient and effective Release Management function within your IT

organization.

Development teams are “proactive.” Developers create software systems, and

they often have an entirely different model of business from the Operations

teams. These groups have a wide variation in both process and approach to

software releases. Some development groups working on slow-moving, back-

office systems may be very amenable to the service management model of

software delivery.

Highlights

Bridging the chasm between

development and operations.

Approaches to software release

management.

The importance of Enterprise

Release Management for

successful DevOps.

Best practices for setting up

an effective Enterprise Release

Management function.

How Plutora helps bridge the

DevOps divide. Bridging the Chasm Between
Development and IT Operations

Development teams are “proactive.” Developers create software systems, and

they often have an entirely different model of business from the Operations

teams. These groups have a wide variation in both process and approach to

software releases. Some development groups working on slow-moving, back-

office systems may be very amenable to the service management model of

software delivery.

Other groups, who are focused on fast-moving, highly technical systems, are

not often aligned with the IT Service Management (ITSM) and Information

Technology Infrastructure Library (ITIL) models.

When it comes to tools, developers are more at home managing development

processes with issue tracking tools like Atlassian’s JIRA, and configuration

management tools like Puppet or Chef.

Traditionally, development teams had the sole purpose of satisfying a particular

business need. They tended to focus on software delivery and internal quality

metrics, and left it to release managers to act as a buffer between any internal

process requirements, or as a bridge across other groups that may have taken a

more formal approach to service management.

In short, developers focus their efforts on ‘pushing out code.’ Changes and

enhancements to production systems, and attendant failures in providing

service, are seen as part of this rush to get the latest and greatest code out to

consumers. Developers thus tend to be agile, proactive, and reliant on self-

service for accomplishing their goals.

Developers focus their
efforts on ‘pushing out
code’ and tend to be
agile, proactive, and
reliant on self-service for
accomplishing their goals.

O
P

E
R

A
T

IO
N

S

Reactive

Operations reacts to
support requests, bugs,
and releases. Releases
are “change requests”.

ITSM / ITIL

Operations understands
process and decision
trees focused on
managing change and
tracking availability

Remedy / ServiceNow
Tools like Remedy and
ServiceNow model
releases as change
requests to be reacted
to.

Central Management

Operations groups
understand that
production and
testing environments
are tightly-controlled
entities in which
changes are tracked and
risk is managed.

D
E

V
E

L
O

P
M

E
N

T

Proactive

Development creates
change for operations
to react to. Software
is developed and
delivered.

DevOps / Agile

DevOps is focused on
continuous, automated
changes to systems.
Agile encourages a
continuous approach to
software delivery.

JIRA, Puppet, Chef

Development tools are
always focused on the
changes necessary to
deliver the next release.

Self-service

Increasingly empowered
development groups
view production and
testing environments
as self-service systems
running on internal or
external clouds.

Operations groups, on the other hand, are “reactive.” They are focused on

service management and incident response. Teams supporting operations

tend to use organization models closely aligned with ITSM and ITIL. A site

operations team at a high profile website will use the term “customer” to refer

to internal end users creating incidents and change requests in a system like

BMC Remedy or ServiceNow.

In another example, a team managing cloud infrastructure for forty internal

development groups will view interactions with internal groups similar to how

service providers view relationships with customers. To accurately track cost

and forecast capacity, interactions with these groups would then follow well-

established patterns for service management.

In a nutshell, Operations teams are responsible for keeping existing services

available, meeting agreed upon Service Level Agreement (SLA), while still

helping the business innovate by rolling out new products and enhancing

existing products.

Also, IT Operations are always faced with less when it comes to budget

and time. The mantra of doing more with less is driven by easy access to

technologies such as virtualization and cloud computing that have increased

efficiencies and made IT an open endeavor instead of a CapEx investment.

At the same time, competitive pressure and practices like DevOps now require

Ops to be nimble, efficient, and cost-effective to ensure they can provide

strategic value to the business and not just be considered a cost center.

This balance (business needs vs. accountability) makes operations

teams cost-conscious, process-driven, reactive, and wary of sudden

and rapid change.

Changes and
enhancements to
production systems, and
attendant failures in
providing service, are seen
as part of this rush to get
the latest and greatest
code out to its consumers.

Figure 1: The canyon of distrust—from development to meaningful deployment.

Historically, ITSM and ITIL were both created to enable a set of standard best

practices for service management and IT. When an international enterprise

needs an internal Help Desk to manage the delivery of a software project

to hundreds of thousands of employees, these are the standards that the

enterprise can use off-the-shelf.

Different services can be assigned SLAs, and systems like ServiceNow or BMC

Remedy can be used to track incidents. Costs are controlled, and system

availability is accurately measured. These models work well if you are delivering

a predictable set of services to internal “customers.” Software releases are

predictable events, which can be forecast days or months in advance, and are

then tracked and managed in a rigid process that aligns with an ITIL standard.

If you are planning a release, you create a series of changes and aggregate them

into release requests. A review board approves the requests, and a service analyst

identifies the risks associated with the release process.

Ultimately, detailed analysis of the output of a release-tracking tool—that tracks a

release as an incident to be managed and responded to—will identify any further

ramifications of the change request.

The DevOps movement emphasizes automation, self-service deployments, and

continuous delivery pipelines to support an Agile software development process.

When an organization adopts tools and procedures associated with DevOps,

this often shifts more of the responsibilities of software deployment and

service management onto development teams, who are working closely with

operations teams, with developers often driving the initiative.

DevOps seems to be working for some enterprises. In fact, it is not uncommon to

hear success stories from the likes of Facebook, Netflix, Amazon, or Etsy. Claims

of multiple (in some cases hundreds) of deployments a day are not uncommon.

In fact, Etsy makes the bold claim that “a new developer commits to production

on Day 1.”

Is this reality to be found across the IT spectrum or is it the viewpoint of a few

unicorns?

The DevOps movement
emphasizes automation,
self-service deployments,
and continuous delivery
pipelines to support
an Agile software
development process.

Approaches to Software Release
Management

Most enterprises still feel stranded when it comes to DevOps. While they

understand the benefits of being Agile, they do not know where to focus

or how to start down the DevOps path. A big reason for this (as outlined in

previous sections) is the inherently different nature, approach, tooling, and

incentives between development and operations teams.

In short, there is a much overlooked yet huge disconnect within the IT

department between teams tasked with supporting software and teams

tasked with creating software. In these organizations, the intersection or

handoff from development to operations continues to be a bottleneck.

Development still perceives operations as a brick wall they run into despite

their best intentions and approach (Agile) to application development. To

development teams, it still feels as if they are tossing code over this brick wall,

hoping it will be deployed correctly by IT operations.

Operations, on the other hand, look at development suspiciously. Has

adequate testing been done? What about ticket sign-offs, authorizations

and approvals, and due process? How about ensuring the code has been

acceptance-tested, been through various stages and gates, and is indeed

ready for prime time?

There is a much overlooked
yet huge disconnect
within the IT department
between teams tasked with
supporting software and
teams tasked with creating
software.

Figure 2: The application release workflow from a tools perspective—a critical diagram for IT management to understand. It shows the variety
of tools available across the management and engineering disciplines to ensure a complete and efficient software delivery process. It further

segments the tools by the functions or phases that typically use it. The Plutora platform brings all functions together for faster,
better software delivery.

It is in this context of development meeting operations that Release

Management becomes significant. It is indeed the lynchpin for a smooth

transition of applications from code completion to deployment into live

production environments.

It is easy to get carried away with thinking that DevOps begins and ends

with ALM tools in conjunction with automation (Continuous Delivery)

tools. While these tools serve an important purpose and have been

readily embraced by development teams, they still leave huge gaps in the

application delivery workflow.

Poor Release Management Practice

Many IT organizations have embraced the Agile practices prescribed for

development as well as the control processes (such as ITIL) prescribed for

operations.

However, as these organizations and their releases have grown more

complex, their Release Management function has been either absent or has

failed to adapt with the changing times. As complexity grows, many issues

will impact application release capabilities. Examples include:

•	 A lack of knowledge and visibility of other teams and their activities in

the release.

•	 Difficulty collaborating across teams and their tools (spreadsheets,

intranets, and wiki pages).

•	 Inability to produce real-time Release Management status reports.

•	 Test environment clashes, inefficient usage, and capacity

mismanagement.

•	 A lot of time spent in trying to gain a single view of how a managed

release is tracking.

•	 Unknown ownership of various release tasks.

These issues not only plague Release Management processes, but they

can also lead to deployment delays and failed releases as well as to a

higher incidence of issues in production. Overcoming these issues will

require a culture change, but implementing proper Release Management

functionality can help empower IT staff to drive change and help address

these issues.

The Importance of Release
Management

Implementing proper
Release Management
functionality can help
empower IT staff to drive
change and help address
these issues.

What is Good Release Management and What Does it Achieve?

Release Management is primarily concerned with the flow of change

throughout various pre-production environments, culminating in successful

deployment into the production IT environment in the least disruptive

manner.

Release activities should include planning, designing, configuration, rollout

planning, testing, communication, and deployment. Release Management

should make the Change Management process more proactive and

predictable and is crucial to managing the volume of independent change

within any IT organization.

Pre-production environments like development, system testing, integration

testing, performance testing, and user acceptance testing, all fall outside

the formal Change Management controls of IT operations.

Given the velocity at which these environments change during build and

test, an appropriate balance needs to be found between agility, flexibility,

and control. Release Management and the Release Manager ensure that

the functions of Development and Operations and the disciplines of Agile

programming and ITIL come together.

Release Management
and the Release Manager
ensure that the functions
of development and
operations and the
disciplines of Agile
programming and ITIL
come together.

While it is common to think of Release Management as the final promotion

of a component into a production environment, we take a far broader view

of Release Management ranging from:

•	 The strategy of establishing quarterly, monthly, or biweekly release

windows.

•	 Prioritizing the contents of each release.

•	 Understanding the complex dependencies and tracking delivery as it

meets the integrated delivery targets.

•	 Aligning the necessary non-production or test environments to support

the coordinated release strategy.

Enterprise Release Management success depends on the following ten best

practice approaches to improving the Release Management function.

Best Practices for Release
Management

Rules of Engagement for
Release Management

Examples

•	 Empowering Release Management
to veto a new release based on
specific acceptance criteria.

•	 Allowing the Release Manager to
sit in on meetings and empowering
him or her to assist in analyzing and
approving changes.

•	 Organizing changes into units and
groups with tactical rules before
releasing them into production.

•	 Testing both pre-release and post-
release into production quality and
approving them with a sign-off
from Release Management.

•	 Developing a back-out strategy
depending on release and
production environment criticality.

1. Review Existing Release Management Processes

Start by reviewing the existing Release Management function — the current

personnel, processes, and tools. The characteristics of a successful Release

Management function are capable people, a clearly defined, regular

process, and a toolset that supports all participants in the process.

2. Establish and Enterprise Release Strategy

It is equally important to establish an enterprise release strategy that clearly

articulates regular release cycles.

As Enterprise Release Management is concerned with ensuring all releases,

projects, and work packages arrive at the same time within a defined

window for integrated testing, it is essential to establish a release strategy

with regular windows that ensures the deployment of new features to

customers at regular intervals.

It is critical to define very early on what your Release Management mission

and goals are. Achieve this by using de-facto policies, or by taking a more

formal approach.

But it is critical that an organization’s Release Management goals are well

articulated. Goals may be metrics centered on successful releases, decrease

in release-based downtime and outages, or more broader and strategic

metrics such as measuring and growing the top line by an agreed-upon

percentage.

Next, define the rules of engagement: the entry, journey through, and exit out
of the Release Management pipeline.

Lastly, it is important to define critical success factors that will define the

success or failure of a release. These range from measuring the number of

incidents caused by releases, the number of failed releases, to the number

of releases implemented but not tested, or the number of releases without

operational assurance.

Other examples of metrics may be number of releases implemented late,

volume of major and minor releases, percent of releases requiring a back-

out plan to be implemented, average best and worst time to implement by

release type, etc.

It is critical to define very
early on what your Release
Management mission and
goals are. Achieve this by
using de-facto policies, or
by taking a more formal
approach.

Enterprise Release Management is successful when it is exercised regularly

and tweaks its processes slightly for each release based on the lessons

learned.

Successful organizations strive to hold steadfast when it comes to their

broader Release Management strategy, have well-defined and executed

rules of engagement, as well as a feedback loop that takes the critical

success factors into account.

3. Define the Optimal Release Management Process

The next step in an effective Release Management function is to define an

optimal Release Management process. This has the following ingredients:

Identify the Release Management Process Inputs

The Release Management process should consider the following as

inputs to the process:

•	 Portfolio and program management systems

•	 Service management systems

•	 Quality management systems

•	 Configuration management systems and deployment solutions

Identify Key Activities for Release Management

Key activities for an effective Release Management process workflow include:

•	 Release planning

•	 Coordination

•	 Design and building

•	 Configuring of releases

•	 Coordinating release acceptance

•	 Conducting rollout planning

•	 Coordinating release communications

•	 Training activities

•	 Coordinating distribution and deployment of releases into production

•	 Measuring and providing management with an overview of Release

Management processes and key KPIs

Successful organizations
strive to hold steadfast
when it comes to
their broader Release
Management strategy,
have well-defined
and executed rules of
engagement, as well as a
feedback loop that takes
the critical success factors
into account.

As you may surmise, these closely mimic the Release Management Process

Inputs except, for example, with Incident Management you must show which

release fixed which incident. Again, the areas to focus on are:

•	 Incident Management

•	 Problem Management

•	 Change Management

•	 Configuration Management

•	 Service-Level Management

•	 Service Monitoring

Invest in the Right People

It is critical to invest in the right people to be custodians of the Enterprise

Release function. The team with the best players wins, and it is no different in

corporate teams and Release Management.

Program Managers and Project Managers will manage a broad set of

workstreams and activities to deliver key milestones. Development managers

will manage developers and produce work packages for deployment.

The Release Manager with executive support is responsible for all releases. He

or she should coordinate the various functions and work activities at all levels,

provide the authority or ability to promote releases, as required, and manage

the process end-to-end so as to ensure optimal overall performance and

quality.

The Environment Manager should ensure proper capacity utilization,

configuration, and uptime of environments. Test, staging, and production

support environments are critical. They each have their own needs, differing

degrees of flexibility, and multiple stakeholders with vested interest in using

them. The task of the Environment Manager is to coordinate a limited supply

of environments across various release stages and stakeholders.

The Test Manager should ensure proper testing protocol is followed

throughout the release process. He or she should ensure that each stage

(unit testing, integrated test suites, user acceptance testing, etc.) is tested and

relevant testing gates are maintained. The Test Manager should coordinate

and communicate with the Release Manager, the Environment Manager, and

the Development Manager.

It is critical to invest
in the right people to
be custodians of the
Enterprise Release
function. The team with
the best players wins,
and it is no different in
corporate teams and
Release Management.

Release Team

Roles

•	 Release Manager
•	 Environment Manager
•	 Test Manager
•	 Implementation Manager

Skills

•	 Leadership
•	 Organization and planning
•	 Technical
•	 Project Management
•	 Communication and teamwork

5. Choose the Right Tools

As seen earlier, a variety of tools across development, test, and operations

are already being used. In addition, a robust Release Management tool is

essential to ensure the success of the Release Management process. Such a

tool should have:

•	 Stakeholder management

•	 Communications

•	 A master release calendar

•	 Automated Release Management workflow capabilities

•	 Data extraction and reporting

•	 Collaboration and views based on roles and function

•	 Auditing and process capabilities (setting up gates, inflow, outflow,

stoppages)

•	 A dashboard for various stakeholders

•	 The ability to integrate with existing tooling

•	 A robust API for use by other tools in the environment

6. Plan for Test Environment Usage and Optimization

All phases of the release process require IT environments to be in place for

test execution and validation well before the completion of any code. The

release infrastructure covers the hardware, storage, network connections,

bandwidth, software licenses, user profiles, and access permissions.

In complex integrated and secure environments, this is no trivial matter and

requires thorough planning, understanding of interdependencies, alignment

of specialist skill sets and resolving contention with competing initiatives.

Critical environment bottlenecks must be eliminated as early as possible

before they hold up delivery.

7. Ensure Transparency and Control

Releases encompass many moving parts. Transparency and control

of each phase within a release are critical to alignment to a set test

window. As releases move through their key phases, integrated gates, and

milestones, work packages are promoted at a physical level through various

environments for various forms of testing and validation. A transparent

baseline of the environments as well as a clear understanding of the

composition of promoted work packages prevents significant rework.

Releases encompass
many moving parts.
Transparency and control
of each phase within
a release are critical to
alignment to a set test
window.

All phases of the release
process require IT
environments to be in
place for test execution
and validation well before
the completion of any
code. Critical environment
bottlenecks must be
eliminated as early as
possible before they hold
up delivery.

8. Engage Stakeholders

A sign of an efficient and working Release Management function, and a

worthwhile goal for any IT organization, is to be able to publish the target

release plan for the next twelve months. While the composition of releases

may not be certain, the intent is to lock in the release windows so that all

teams work towards not only the final release date, but also the intermediate

targets, such as completion of integrated testing, completion of user

acceptance testing, and so on.

In an environment where targets are continually shifting, being able to set

and communicate release windows twelve months into the future essentially

shifts the discussion to release composition rather than release date. Once

the release dates are defined and approved, stakeholders should be engaged

to prioritize outstanding feature requests and allocate them into future

releases. Stakeholders fill releases as far into the future as practical. There

should be certainty around the immediate next release and less definition

about the composition of releases scheduled further into the future. Regular

structured releases give customers confidence that they can order something

and have it delivered.

9. Encourage Continuous Communication

Regular communication with stakeholders, delivery teams, and suppliers

is essential to ensure all parties have a consistent view of the expected

outcomes and the manner of achieving them. Where possible, information

relating to the progress of the release should be available always in

a frictionless manner and should not be limited to the summarized

information presented in the form of dated presentations. Rather, all parties

should have a systematic way of accessing the information they need in real

time.

10. Establish Sponsorship and Metrics

Practitioners should consider having a sponsor. Senior, active sponsors

bode well for any Release Management function. Additionally, having

visible metrics to monitor end-to-end release health is critical. Taking

the time to define these release health metrics and ensuring they are

consistently measured and published is essential to establishing credibility.

Understanding the business impact is critical to the Release Management

function being taken seriously, getting funded, sponsorship and priority.

Ensuring that technology concerns do not crowd out business impacts can

be more effort than one expects.

A sign of an efficient
and working Release
Management function,
and a worthwhile goal for
any IT organization, is to be
able to publish the target
release plan for the next
twelve months.

Regular communication
with stakeholders, delivery
teams, and suppliers is
essential to ensure all
parties have a consistent
view of the expected
outcomes and the manner
of achieving them.

REVENUE

Accelerated Time-to-Value

Good Release Management provides
accelerated time to value. It does so by
delivering services to customers on ever-
shorter release cycles. End users realize the
benefits of changes as quickly as possible.

Higher Release Throughput

Release Management delivers higher
release throughput by absorbing higher
rates of changes to systems while
maintaining IT service quality through a
unified, well-understood, and controlled
release process.

Enhanced Agility and Flexibility

Release Management enhances agility
and flexibility by responding to new and
emerging needs and competitive threats
as they arise. With all parties involved
operating from consistent information,
they can quickly understand the impact
of new changes to the release schedule
and risk profile of the release in order to
respond positively to these demands.

COST

Increased Productivity

Effective Release Management
increases productivity through
the creation and enforcement of
standards and best practices across
the release process, as well as by
ensuring more efficient allocation of
test environments to support releases.
It delivers smoother transitions of
releases from development activities
(projects) to final destination
environments.

Increased Collaboration

Release Management increases
collaboration by bringing together
disparate teams and skill sets involved
in the Release Management process
through information sharing and
instant communication. All release
stakeholders have complete and
timely insights into schedules,
changes, priority, and status. Release
Management metrics are clear across
the organization.

Duplicate and Manually-Intensive

Activities Eliminated

Release Management removes
duplication and manually-intensive
activities in the planning, management,
and deployment stages of the release
process. It also eliminates the need
to be always reconciling inconsistent
information sources from day-to-day
activities.

RISK AND UNCERTAINTY

Mitigate Release Failure

Good Release Management practice
mitigates release failure, the bane
of any IT organization. It does so
through strong policy and governance
that enables stakeholders to take
preventative action based on superior
information.

Real-time visibility into enterprise-wide
release statuses enables stakeholders
to pinpoint the root cause of potential
release failures and mitigate them
quickly.

Plutora is an all-in-one, SaaS-based software tool that manages all aspects

of the Release Management lifecycle. Plutora enables teams at a portfolio

or enterprise team level to enforce a repeatable release framework. With

Plutora, users can architect, plan, coordinate, and govern all aspects of the

Release Management lifecycle.

Plutora is aligned to the ITIL v3 Release Management Process. Plutora also

aligns well with the DevOps initiative, and the planning and collaboration

processes of the DevOps approach.

With Plutora, one can plan releases, build the release pipeline and release

scope, handover deployment plans and run books to Operations, and

improve collaboration between Development and Operations.

Plutora and Release Management

With Plutora Release,
users can architect, plan,
coordinate, and govern
all aspects of the Release
Management lifecycle.

Every aspect of Plutora can be customized, due to its powerful admin

customization features, and Plutora is integrated into third party tools and

systems you may already be leveraging. Examples include CA Clarity, JIRA,

ServiceNow, IBM RTC, Remedy, and many more.

Value from Plutora cuts across the organization. It also provides numerous

out-of-the-box reports and executive dashboards which are parameterized.

It provides relevant reporting by working with the IT organization to

understand their requirements and subsequently developing reports that

meet these requirements.

Release Managers and the Release Management function sit at the DevOps

divide. We have seen how they sit between an operations group tasked with

accepting, deploying, and supporting a software release. This group wants

a predictable process, they view releases as incidents to be managed, and

they answer to a business that wants predictability and accountability.

On the other side of the divide are the Development groups. They are

tasked with creating software to be released. These groups tend to be more

diverse in that they may be using bleeding-edge technology to create

a next-generation website as compared to another group that may be

developing more traditional applications, for example, applications based

on an Oracle database. Both development and operations teams use

different tools and different vernacular when they describe their respective

roles.

One can truly think of Release Management as a heat shield protecting

a release during the re-entry process from a DevOps orbit to a more

manageable ITSM approach that the largest companies have come to

expect. In this context, Release Management is critical, and it is important

to establish a sound Release Management practice within the organization.

A good Release Management tool such as Plutora helps organizations

achieve the right balance between development and operations, and

bridges the DevOps gap.

Conclusion

Release Management is
critical, and it is important
to establish a sound
Release Management
practice within the
organization. A good
Release Management
tool such as Plutora helps
organizations achieve the
right balance between
development and
operations, and bridges
the DevOps gap.

Plutora, the market leader of value
stream management solutions for
enterprise IT, improves the speed and
quality of software creation by capturing,
visualizing and analyzing critical
indicators of every aspect of the delivery
process. Plutora orchestrates release
pipelines across a diverse ecosystem of
development methodologies, manages
hybrid test environments, correlates
data from existing toolchains, and
incorporates test metrics gathered at
every step. The Plutora Platform ensures
organizational alignment of software
development with business strategy and
provides visibility, analytics and a system
of insights into the entire value stream,
guiding continuous improvement
through the measured outcomes of
each effort.

About Plutora

Learn more: www.plutora.com
Email: contact@plutora.com

