
1

How Release 
Management Works: 
An Overview

WHITE 
PAPER RELEASE MANAGEMENT: PART 6

Deliver value faster to compete in the digital age. 

Reduce release risk by making it visible and ensuring 
teams complete the tasks that ensure quality, stability, 
security and compliance without slowing down.

Learn key terms and concepts in release management.



2

We’ve always had to release something to 

live to realize its value but a few key things 

have changed in recent history:

A Brief History of Release 
Management

Releases have shrunk: Digital 

transformation requires moving from 

waterfall, project-oriented ways of working 

to agile/DevOps, product-oriented ways of 

working. This means that large batches of 

requirements that are developed, tested 

and released become small, ideally-single 

flow items.

Releases have become more frequent: 
Because we are releasing in smaller batches, 

we are doing it more frequently. This allows 

us to be more experimental and receive 

faster feedback on whether the work we just 

made available to the customer has been 

received as intended – or not, and further 

action needs to be taken.

Automation is available: For a long time 

releases required a great deal of manual 

effort such as building (virtual) machines/

environments, performing tests, preparing 

and deploying release packages, opening 

ports, updating tickets, requesting 

permissions – often many, many steps. 

Individuals frequently wrote scripts to 

automate commonly repetitive steps – but 

these scripts often proliferated becoming a 

‘script monster’ where only the creator knew 

the intricacies of how they were built and 

so what looked like an IT hero, was actually 

a Single Point of Failure (SPOF). Now, there 

is automation available from end-to-end in 

every release process (the DevOps toolchain) 

and release management tools like Plutora 

can manage all these processes across every 

team in an organization.

Continuous Integration avoids merge 
hell: Relating to both agile and automation, 

the aim is to continually deliver value. This 

is achieved by always having software in 

a releasable state thanks to trunk based 

development and continuous testing 

(continuous integration) where all developers 

commit code at least daily to trunk and 

every time they do so, a build is automated 

along with functional tests such as unit, 

integration and user acceptance as well as 

non-functional tests for security 

and performance.

The focus is on flow: Plutora is also a value 

stream management platform so it can use 

data from releases to ensure teams are able 

to see where they can optimize their release 

process and improve time to release, value 

and learning.



3

IT Service Management (ITSM) has always 

included the release management 

process and associated processes like 

change management, but they need to be 

adjusted to satisfy the demands in digitally 

transforming companies for increasing 

the speed and frequency of releases to 

compete in a disrupted world.

In an ideal world, all teams and systems 

would have sufficient autonomy and be 

sufficiently loosely coupled so that no 

dependencies exist, reducing a great 

deal of risk around the release process. 

Sadly, few organizations currently live 

in the ideal world. As teams continue 

to work on breaking dependencies, 

release management provides a platform 

to manage the transition to a truly 

autonomous organization.

Challenges that Release 
Management Addresses

Release management supports businesses 

who want to deliver value faster to 

compete in the digital age.

As teams attempt to release more 

frequently and faster, they often encounter 

higher levels of incidents and increased 

need for release nights and weekends. All 

this unplanned and out of hours work leads 

to burnout. Effective release management 

reduces the change failures associated 

with higher release and deployment 

frequency, easing the burden on the 

technology delivery teams and allowing 

them to do more useful things, like develop 

more value, pay down technical debt and 

improve delivery platforms.

Release failure isn’t just costly for the 

teams; it’s bad for the customers and when 

they have poor experience, it has a direct 

effect on organizational performance as 

brand reputation dips, usage lowers and 

customer retention and acquisition falters.

Value stream teams continually optimize 

the flow of work to their customers and the 

subsequent release of value. The release 

process is a key step in the value stream, 

so release management supports value 

stream management by identifying and 

removing waste and rework and unplanned 

work caused when the process fails.

How Release Management 
Works: An Overview

Release management aims to reduce risks 

associated with releases by making them 

visible and ensuring teams complete the 

tasks that ensure quality, stability, security 

and compliance (safety) without slowing 

them down. This is achieved by following a 

number of steps:



4

1. Identify your value streams: These 

are your products or services and each will 

have their own release process which 

may often have dependencies on other 

teams’ activities.

2. Map each value streams’ release 
process:  A process map visually expresses 

the tasks in your release process. Here’s 

an example:



5

3. Create release templates: These 

define the steps, tasks, or checklists and 

organize them into phases and gates and 

associated timelines.

4. Coordinate releases: A release schedule 

is essential for organizations with multiple 

teams working on multiple systems 

delivering changes. 

It indicates that planning for the delivery 

of releases and changes has occurred 

and visualizes the contentions and 

dependencies around releases, providing 

the mechanism to make decisions around 

release dates and test environment 

allocations.

5. Standardize releases: Look for patterns 

within your portfolio of release processes 

and see how you can categorize them. 

Also, look for patterns that will allow you 

to understand and standardize tasks in the 

release process across all value streams.

6. Streamline releases: Each team 

must be empowered to self-discover 

improvements in their release process 

as part of their value stream. Local 

discoveries must be shared to become 

global improvements.

Key Terms in Release 
Management

Application Release Automation (ARA) 
or Orchestration (ARO): Controlled 

continuous delivery pipeline capabilities 

including automation (release upon code 

commit), environment modeling (end-to-

end pipeline stages, and deploy application 

binaries, packages, or other artifacts 

to target environments), and release 

coordination (project, calendar, 

and scheduling management, integration 

with change control and/or IT service 

support management).

Artifact: Any element in software 

development including documentation, test 

plans, images, data files, and executable 

modules. Some of these artifacts will form 

part of the release.

Backlog: Requirements for a system 

expressed as a prioritized list of product 

backlog items usually in the form of ‘User 

Stories’. The product backlog is prioritized 

by the Product Owner and should include 

both functional and non-functional 

requirements. The delivery of these user 

stories form a release.

Batch Sizes:   Refers to the volume of 

features involved in a single code release.



6

Canary Release: A canary release (also 

called a canary test) is a push of code 

changes to a small number of end-users 

who have not volunteered to test anything. 

Similar to incremental rollout, it is where

a small portion of the user base is updated 

to a new version first. This subset, the 

canaries, then serve as the proverbial 

“canary in the coal mine”. If something goes 

wrong then a release is rolled back and 

only a small subset of the users

are impacted.

Change Failure Rate: A measure of 

the percentage of failed/rolled back 

changes released.

Change Lead Time: A measure of the time 

from a request for a change to the delivery 

of the change.

Change Management: The process 

that controls all changes throughout 

their lifecycle.

Continuous Delivery: A methodology that 

focuses on making sure software is always 

in a releasable state throughout

its lifecycle.

Continuous Delivery Pipeline: A 

continuous delivery pipeline refers to the 

series of processes that are performed 

on product changes in stages. A change is 

injected at the beginning of the pipeline. 

A change may be new versions of code, 

data, or images for applications. Each 

stage processes the artifacts resulting from 

the prior stage. The last stage results in 

deployment to production.

Continuous Deployment: A set of 

practices that enable every change that 

passes automated tests to be automatically 

deployed to production.

Continuous Flow: Smoothly moving people 

or products from the first step of a process to 

the last with minimal (or no) buffers between 

steps.

Continuous Integration (CI): A development 

practice that requires developers to merge 

their code into trunk or master ideally at least 

daily and perform tests (i.e. unit, integration, 

and acceptance) at every code commit.

Deployment: The installation of a specified 

version of software to a given environment 

(e.g., promoting a new build into production).

https://www.plutora.com/blog/canary-deployments-what-they-are-and-how-to-use-them


7

Deployment Frequency: How often an 

enhancement to a value stream’s product 

or service is deployed.

DevOps Toolchain: The tools needed to 

support a DevOps continuous development 

and delivery cycle from idea through 

release to value realization.

Flow: How people, products, or 

information move through a process.

Flow of Value: A form of map that shows 

the end-to-end value stream.

IT Service Management: Adopting a 

process approach towards management, 

focusing on customer needs and IT services 

for customers rather than IT systems, and 

stressing continual improvement.

Mean Time Between Deploys: Used to 

measure deployment frequency.

Non-Functional Requirements: 
Requirements that specify criteria that can 

be used to judge the operation of a system, 

rather than specific behaviors or functions 

(e.g., availability, reliability, maintainability, 

supportability); qualities of a system.

Release:   Software that is built, tested, and 

deployed into the production environment.

Release Acceptance Criteria: Measurable 

attributes for a release package that 

determine whether a release candidate is 

acceptable for deployment to customers.

Release Calendar: A rolled up view of all 

releases occurred, happening and in plan 

at any point in time.

Release Candidate: A release package that 

has been prepared for deployment, may or 

may not have passed the Release.

Release Frequency: How often an 

enhancement to a value stream’s product 

or service is released.

Release Governance: The controls and 

automation (security, compliance, or 

otherwise) that ensure your releases are 

managed in an auditable and trackable 

way, in order to meet the need of the 

business to understand what is changing.

Release Management: The process 

that manages releases and underpins 



8

Continuous Delivery and the 

deployment pipeline.

Release Manager: A role accountable 

for the overall quality of the release 

management process. There may be 

a team of release managers covering 

multiple value streams, or teams may have 

someone dedicated or not to the role.

Release Orchestration: Typically a 

deployment pipeline used to detect any 

changes that will lead to problems in 

production. Orchestrating other tools 

will identify performance, security, or 

usability issues.

Release Package: A combination of one or 

more release units deployed together as 

a single release due to interdependencies, 

scheduling, or business priorities

Release Pipeline: A specific release 

process from feature planning to delivery.

Release Plan: A forecast of the activities 

planned to deploy a release to the 

production environment.

Release Policy: The definition of release 

types, standards, governance requirements 

for an organization.

Release Process: All the tasks (manual, 

automated, human and technical) needed 

to make completed changes available to 

the customer.

Release Process Map: A visual 

representation of the release process

that can be collaborated on within and 

between teams.

Release Template: A framework 

document that can be completed with 

the steps, tasks, or checklists associated 

with a release (and related releases) that 

organizes them into phases and gates and 

associated timelines.

Release Train: The release train is a 

technique for coordinating releases across 

multiple teams or components that have 

runtime dependencies.

 All releases happen on a fixed and 

reliable schedule regardless of whether 

all expected features are ready (the train 

doesn’t wait for you – if you miss it you wait 

for the next one).

Release Unit: The set of artifacts released 

together to implement a specific feature.

Risk: A possible event that could cause 

harm or loss or affect an organization’s 

ability to achieve its objectives. The 

management of risk consists of three 

activities: identifying risks, analyzing risks, 

and managing risks. 



9

The probable frequency and probable 

magnitude of future loss. Pertains to a 

possible event that could cause harm or 

loss or affect an organization’s ability to 

execute or achieve its objectives.

System Impact Matrix: A diagram that 

shows where releases contain shared 

components that represent risk.

Time to Learning: The time between 

conceiving an idea and learning how it was 

received based on customer feedback.

Time to Market: The period of time 

between when an idea is conceived and 

when it is available to customers.

Time to Release: The time between 

conceiving an idea and releasing the 

change that satisfies the Definition of Done 

to the live, production environment.

Unit Test: The purpose of the test is to 

verify code logic.

User Stories: These express requirements 

in the product backlog and are likely to 

be tagged with unique identifiers that will 

become useful as you automate.

Value Stream: All of the activities needed 

to go from a customer request to a 

delivered product or service.

Value Stream Management: Value 

Stream Management is a combination of 

people, processes, and technology that 

maps, optimizes, visualizes, measures, 

and governs business value flow through 

heterogeneous software delivery pipelines 

from idea through development and 

into production.

Value Stream Management Platform 
(VSMP): Software that manages 

value streams.



10

Key Concepts in Release 
Management

Release management exists because of 

dependencies. If each team had autonomy 

and no systems were interconnected, then, 

assuming each team was correctly ensuring 

their own quality, security, stability and 

compliance, there would be no need to 

manage releases.

Release managers exist to help teams 

ensure their activities, performed in the 

spirit of moving their own team forward, 

don’t negatively impact other teams.

Release calendars exist to provide visibility 

across an organization of all the teams’ 

activities so that risks can be surfaced 

and mitigated.

Release nights and weekends occur 

because releases are dangerous and 

need to happen at times when they are 

less likely to be customer impacting. Staff 

have to be at work or on call out of hours 

during this time and they are a key cause 

of burnout, dissatisfaction and employee 

disengagement in the industry.

Release management supports the 

transition to a place where:

• Dependencies are identified, managed 

and ultimately removed where possible

• Automation delivers continuous 

compliance and the focus is on 

value flow

• Releases are frequent, small and 

risk-free

https://www.plutora.com/blog/dependency-mapping-a-complete-guide-to-reducing-business-risk


11

Plutora, the market leader of value stream 

management solutions for enterprise IT, improves 

the speed and quality of software creation by 

capturing, visualizing and analyzing critical 

indicators of every aspect of the delivery process. 

Plutora orchestrates release pipelines across a 

diverse ecosystem of development methodologies, 

manages hybrid test environments, correlates 

data from existing toolchains, and incorporates 

test metrics gathered at every step. The Plutora 

Platform ensures organizational alignment of 

software development with business strategy and 

provides visibility, analytics and a system of insights 

into the entire value stream, guiding continuous 

improvement through the measured outcomes of 

each effort.

About Plutora

Learn more: www.plutora.com

Email: contact@plutora.com

Want to learn more about release 
management? 

Check our series of white papers about Release Management 

to learn everything you need to know. 

1. What is a Software Release?

2. What is Release Management

3. The Benefits of Release Management

4. Release Management Techniques for Process 

Improvements

5. How Release Management Works: An Overview 

6. Release Management, DevOps, and Agile

Visit www.plutora.com/software-release-management 

to learn more.

http://www.plutora.com/software-release-management

